People
  1. Academic experts
  2. Research students
  3. Students
  4. Alumni
  5. Senior people at City
  6. Non-academic staff
  7. Honorary graduates
People

Contact Information

Contact

Visit Simone Stumpf

A206, College Building

Postal Address

City, University of London
Northampton Square
London
EC1V 0HB
United Kingdom

About

Overview

Simone Stumpf received a PhD in Computer Science in 2001 and a BSc in Computer Science with Cognitive Science in 1996, both from University College London. She joined City University London as Lecturer in 2009. Previously, she worked at Oregon State University (USA) and University College London as a post-doctoral researcher. Simone also has professional agency experience having worked as a User Experience Architect.

She has a long-standing research focus on user interactions with machine learning and personal information management systems and has authored over 60 publications in this area. Her current research projects include investigating sensor-based health self-care systems for people with dementia and Parkinson’s disease, personal health information management for people living with HIV, collecting data from blind users to personalise object recognition, and investigating fair AI. Her work has contributed to shaping the field of Explainable AI (XAI) through the Explanatory Debugging approach to interactive machine learning, providing design principles for crafting explanations. The prime aim of her work is to empower all users to use intelligent machines effectively.

Qualifications

  1. PhD Computer Science, City, University of London, uk, 2001
  2. BSc Computer Science with Cognitive Science, University College London, United Kingdom, 1996

Employment

  1. City, University of London, Senior Lecturer, 2011 – present
  2. Lecturer, City, University of London, 2009 – 2011
  3. Assistant Professor (Senior Researcher), Oregon State University, 2008 – 2112
  4. UX Architect, White Horse, 2007 – 2009
  5. Research Manager, Oregon State University, 2004 – 2007
  6. Research Fellow, University College London, 2001 – 2004
  7. Project Manager, BT, 1996 – 1997

Memberships of professional organisations

  1. Association for the Advancement of Artificial Intelligence (AAAI), 2005 – present
  2. Association for Computing Machinery (ACM), 2005 – present
  3. British Computer Society (BCS), 2001 – present
  4. Member, User Experience Professionals Association (UXPA) UK

Research

Research keywords

End-user programming and end-user development, Intelligent User Interfaces, Personal Information Management, Explainable AI (XAI).

Current projects

2019-2020 Microsoft AI for Accessibility, UK, Principal Investigator, ORBIT: Meta Learning for Personalised Object Recognition, $193,000

2018-2021 Engineering and Physical Sciences Research Council (EPSRC), UK, Co-Investigator, INTUIT: Interaction design for trusted sharing of personal health data to live well with HIV , £816,126.

2017-2020 Engineering and Physical Sciences Research Council (EPSRC), UK, Co-Investigator, SCAMPI: Self-Care Advice, Monitoring, Planning and Intervention, £1,006,003.

Completed Projects

2018-2019 Microsoft Research Cambridge, UK, Intelligible AI, £3,500.

2016-2019 European Regional Development Fund, Delivery Partner Lead, CASTS: Capital Accelerate & Scale Tech Superstars, £123,216.

2016-2018 Wales & West Utilities and Western Power Distribution, UK, Research Partner Lead, FREEDOM: Flexible Residential Energy Demand Optimisation and Management, £87,679.

2014 CreativeWorks London, UK, Academic Lead, The Wayne McGregor Living Archive, £14,997.

2013-2016 EU FP7, Co-Investigator, EMBalance: A Decision Support System towards early diagnostic evaluation and efficient management plan formulation of balance disorders (EU FP7-ICT 610454), €4,740,776.

2012-2014 Technology Strategy Board, UK, Knowledge Transfer Project Lead, Enhanced Online Video Interaction, £101,567.

2011 EU FP7, Consultant, Trusted architecture for securely shared services, €57,994.

2010-2011 Technology Strategy Board, UK, Co-Investigator, Image retrieval for professionals, £277,916.

2008-2012 National Science Foundation (NSF), USA, Co-Investigator, End-user debugging of machine-learned programs, $899,519.

2007-2008 Intel Foundation, Principal Investigator, Understanding and supporting multitasking workers using the machine learning TaskTracer framework, $155,800.

Research Students

Beatrice Vincenzi

Attendance: Oct 2020 – present, full-time

Thesis title: AI Technology for Extending Sighted Guide Navigation

Role: 1st Supervisor

Adrian Bussone

Attendance: Oct 2015 – Sep 2018

Thesis title: Reflection and Personal Health Informatics for People Living with HIV

Role: 1st Supervisor

Gilang Pradana

Attendance: Oct 2013 – Oct 2018

Thesis title: Empatchi: A Phatic Technology to Support Emotion Regulation

Role: 1st Supervisor

Dara Sherwani

Attendance: Feb 2013 – Feb 2017

Thesis title: What Makes Reviews Trustworthy? An Investigation of User Trust in Online Reviews when Making Purchase Decisions

Role: 1st Supervisor

Tracey Booth

Thesis title: Supporting end-user developers in troubleshooting physical computing artefacts

Role: 1st Supervisor

Publications

  1. Neate, T., Bourazeri, A., Roper, A., Stumpf, S. and Wilson, S. (2019). Co-created personas: Engaging and empowering users with diverse needs within the design process.
  2. Bourazeri, A. and Stumpf, S. (2018). Co-designing smart home technology with people with dementia or Parkinson's disease.
  3. Bussone, A., Stumpf, S. and Buchanan, G. (2016). "It feels like I'm managing myself": HIV+ people tracking their personal health information.

Book

  1. Barbosa, S., Markopoulos, P., Paternò, F., Stumpf, S. and Valtolina, S. (2017). Preface. ISBN 978-3-319-58734-9.

Chapters (6)

  1. Pietriga, E., Luyten, K., Jansen, Y., Nichols, J., Stumpf, S., Calvary, G. … Di Fiore, F. (2018). Foreword. ISBN 978-1-4503-5897-2.
  2. Holliday, D., Wilson, S. and Stumpf, S. (2016). User trust in intelligent systems: A journey over time. In Nichols, J., Mahmud, J. and O'Donovan, J. (Eds.), Proceedings of the 21st International Conference on Intelligent User Interfaces (pp. 164–168). New York, USA: ACM. ISBN 978-1-4503-4137-0.
  3. Ginon, B., Stumpf, S. and Jean-Daubias, S. (2016). Towards the right assistance at the right time for using complex interfaces. In Buono, P., Lanzilotti, R. and Matera, M. (Eds.), International Working Conference on Advanced Visual Interfaces (pp. 240–243). New York, USA: ACM. ISBN 978-1-4503-4131-8.
  4. Wong, W.K., Oberst, I., Das, S., Moore, T., Stumpf, S., McIntosh, K. … Burnett, M. (2011). End-user feature labeling via locally weighted logistic regression. PROCEEDINGS OF THE TWENTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE (pp. 1575–1578). ISBN 978-1-57735-509-0.
  5. Kulesza, T., Wong, W.K., Stumpf, S., Perona, S., White, R., Burnett, M.M. … Ko, A.J. (2009). Fixing the program my computer learned: Barriers for end users, challenges for the machine. In Conati, C. and Bauer, M. (Eds.), Proceedings of the 14th international conference on Intelligent user interfaces (pp. 187–196). New York, USA: ACM. ISBN 978-1-60558-168-2.
  6. Crosswhite, J., Fox, J., Reed, C., Scaltsas, T. and Stumpf, S. (2004). Computational models of rhetorical argumentation. In Reed, D.C. and Norman, T.J. (Eds.), Argumentation machines: new frontiers in argument and computation London: Springer Netherlands. ISBN 978-1-4020-1811-4.

Conference papers and proceedings (53)

  1. Ahmed, S., Balasubramanian, H., Stumpf, S., Morrison, C., Sellen, A. and Grayson, M. (2020). Investigating the Intelligibility of a Computer Vision System for Blind Users. ACM Conference on Intelligent User Interfaces 17-20 March, Cagliari, Italy.
  2. Mendez, C., Letaw, L., Burnett, M., Stumpf, S., Sarma, A. and Hilderbrand, C. (2019). From GenderMag to InclusiveMag: An Inclusive Design Meta-Method. 2019 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC) 14-18 October.
  3. Stumpf, S. (2019). Horses for courses: Making the case for persuasive engagement in smart systems.
  4. Booth, T., Bird, J., Stumpf, S. and Jones, S. (2019). Designing Troubleshooting Support Cards for Novice End-User Developers of Physical Computing Prototypes.
  5. Bussone, A., Stumpf, S. and Wilson, S. (2019). Designing for reflection on shared HIV health information.
  6. Lim, B., Smith, A. and Stumpf, S. (2018). ExSS 2018: Workshop on explainable smart systems.
  7. Goebel, R., Chander, A., Holzinger, K., Lecue, F., Akata, Z., Stumpf, S. … Holzinger, A. (2018). Explainable AI: The new 42?
  8. Göker, A., Butterworth, R., MacFarlane, A. and Stumpf, S. (2017). Presenting and visualizing image results for professional image searchers: A field evaluation.
  9. Göker, A., Butterworth, R., MacFarlane, A. and Stumpf, S. (2017). Presenting and visualizing results on an image retrieval user interface.
  10. Skrebe, S. and Stumpf, S. (2017). An exploratory study to design constrained engagement in smart heating systems.
  11. Brown, D., Waugh, S., Bussone, A. and Stumpf, S. (2017). Evaluation of BeYou plus an mHealth application to support self-management strategies for people living with HIV.
  12. Booth, T., Stumpf, S., Bird, J. and Jones, S. (2016). Crossed wires: Investigating the problems of end-user developers in a physical computing task.
  13. Kulesza, T., Burnett, M., Wong, W.K. and Stumpf, S. (2015). Principles of Explanatory Debugging to personalize interactive machine learning.
  14. Bussone, A., Stumpf, S. and O'Sullivan, D. (2015). The role of explanations on trust and reliance in clinical decision support systems.
  15. Sherwani, D. and Stumpf, S. (2014). Toward helping users in assessing the trustworthiness of user-generated reviews.
  16. Booth, T. and Stumpf, S. (2013). End-user experiences of visual and textual programming environments for Arduino.
  17. Kulesza, T., Stumpf, S., Burnett, M., Yang, S., Kwan, I. and Wong, W.K. (2013). Too much, too little, or just right? Ways explanations impact end users' mental models.
  18. Holliday, D., Wilson, S. and Stumpf, S. (2013). The Effect of Explanations on Perceived Control and Behaviors in Intelligent Systems.
  19. Curran, W., Moore, T., Kulesza, T., Wong, W.K., Todorovic, S., Stumpf, S. … Burnett, M. (2012). Towards recognizing "cool": Can end users help computer vision recognize subjective attributes of objects in images?
  20. Kulesza, T., Stumpf, S., Burnett, M. and Kwan, I. (2012). Tell me more? the effects of mental model soundness on personalizing an intelligent agent.
  21. Loumakis, F., Stumpf, S. and Grayson, D. (2011). This image smells good: Effects of image information scent in search engine results pages. 20th ACM Conference on Information and Knowledge Management (CIKM) 24-28 October, Glasgow.
  22. Stumpf, S. and Muscroft, S. (2011). When users generate music playlists: When words leave off, music begins? Third International Workshop on Advances in Music Information Research (AdMIRe) in conjunction with the IEEE International Conference on Multimedia and Expo (ICME) 11-15 July, Barcelona.
  23. Wong, W.-.K., Oberst, I., Das, S., Moore, T., Stumpf, S., McIntosh, K. … Burnett, M.B. (2011). End-User Feature Labeling: A Locally-Weighted Regression Approach. Conference on Intelligent User Interfaces (IUI) 13-16 February, Palo Alto.
  24. Wong, W.-.K., Oberst, I., Das, S., Moore, T., Stumpf, S., McIntosh, K. … Burnett, M. (2011). End-user feature labeling: A locally-weighted regression approach.
  25. Kulesza, T., Burnett, M., Stumpf, S., Wong, W.K., Das, S., Groce, A. … McIntosh, K. (2011). Where are my intelligent assistant's mistakes? A systematic testing approach.
  26. Scaffidi, C., Burnett, M., Costabile, M.F., Stumpf, S. and Wulf, V. (2011). European-American collaboration workshop.
  27. Shinsel, A., Kulesza, T., Burnett, M., Curran, W., Groce, A., Stumpf, S. … Wong, W.K. (2011). Mini-crowdsourcing end-user assessment of intelligent assistants: A cost-benefit study.
  28. Loumakis, F., Stumpf, S. and Grayson, D. (2011). This image smells good: Effects of image information scent in search engine results pages.
  29. Kulesza, T., Stumpf, S., Burnett, M., Wong, W.-.K., Riche, Y., Moore, T. … McIntosh, K. (2010). Explanatory debugging: Supporting end-user debugging of machine-learned programs.
  30. Metoyer, R.A., Stumpf, S., Neumann, C., Dodge, J., Cao, J. and Schnabel, A. (2009). Explaining How to Play Real-Time Strategy Games. Twenty-ninth SGAI International Conference on Artificial Intelligence (AI-2009) 15-17 December, Cambridge.
  31. Shen, J., Irvine, J., Bao, X., Goodman, M., Kolibaba, S., Tran, A. … Dietterich, T.G. (2009). Detecting and correcting user activity switches: Algorithms and interfaces.
  32. Stumpf, S., Sullivan, E., Fitzhenry, E., Oberst, I., Wong, W.-.K. and Burnett, M. (2008). Integrating rich user feedback into intelligent user interfaces.
  33. Stumpf, S., Fitzhenry, E. and Dietterich, T.G. (2007). The Use of Provenance in Information Retrieval. Workshop on Principles of Provenance (PROPR) 19-20 November, Edinburgh.
  34. Stumpf, S., Burnett, M. and Dietterich, T. (2007). Improving intelligent assistants for desktop activities.
  35. Stumpf, S., Rajaram, V., Li, L., Burnett, M., Dietterich, T., Sullivan, E. … Herlocker, J. (2007). Toward harnessing user feedback for machine learning.
  36. Neumann, C., Schnabel, A., Dodge, J., Metoyer, R.A. and Stumpf, S. (2007). How experts explain strategic behavior during real-time strategy games.
  37. Stumpf, S., Burnett, M.M. and Dietterich, T.G. (2007). Improving Intelligent Assistants for Desktop Activities.
  38. Stumpf, S. and Herlocker, J. (2006). TaskTracer: Enhancing Personal Information Management Through Machine Learning. PIM Workshop, SIGIR 10-11 August, Seattle.
  39. Fitzhenry, E., Herlocker, J. and Stumpf, S. (2006). Supporting the Use and Authoring of Digital Physics Textbooks. Thinking Through New Media 6-8 June, Durham.
  40. Kissinger, C., Burnett, M., Stumpf, S., Subrahmaniyan, N., Beckwith, L., Yang, S. … Rosson, M.B. (2006). Supporting end-user debugging: What do users want to know?
  41. Lettkeman, A.T., Stumpf, S., Irvine, J. and Herlocker, J. (2006). Predicting task-specific webpages for revisiting.
  42. Burnett, M., Herlocker, J., Lynn, J., Stumpf, S. and Wynn, E. (2005). TaskTracer: Using Machine Learning to Simplify Multi-tasking. Intel Information Systems and Technology Group, Technical Community Conference 24-26 October, Lake Tahoe2.
  43. Stumpf, S., Bao, X., Dragunov, A., Dietterich, T.G., Herlocker, J., Johnsrude, K. … Shen, J.Q. (2005). Predicting user tasks: I know what you're doing!
  44. Stumpf, S., Bao, X., Dragunov, A., Dietterich, T.G., Herlocker, J., Johnsrude, K. … Shen, J.Q. (2005). The TaskTracer system.
  45. Stumpf, S. and McDonnell, J. (2004). Sharing metadata - Problems and potential solutions.
  46. Stumpf, S. and McDonnell, J. (2003). Using repertory grids to test data quality and experts’ hunches. Workshop on Theory and Applications of Knowledge Management (TAKMA) 1-5 September, Prague.
  47. Stumpf, S. and McDonnell, J. (2003). Data, Information and Knowledge Quality in Retail Security Decision Making. 3rd International Conference on Knowledge Management (IKNOW’03) 2-4 July, Graz.
  48. Stumpf, S. and McDonnell, J. (2002). Is there an argument for this audience? 5th Conference of the International Society for the Study of Argumentation (ISSA) 25-28 June, Amsterdam.
  49. Stumpf, S. and McDonnell, J. (2002). Taking off the blinkers and creating knowledge: decision support for retail security specialists. 7th International Psychology and Crime Investigation Conference 12-14 June, Liverpool.
  50. Stumpf, S. and McDonnell, J.T. (2001). Individual learning styles and perceptions of experiential learning in design teams. Proceedings 5th International Design Thinking Research Symposium "Designing in Context" (DTRS2001) 18-20 December, Delft.
  51. Stumpf, S. and McDonnell, J.T. (2000). A representation of rhetorical construction of understanding in teams during early design episodes. CoDesigning 2000 11-13 September, Coventry.
  52. Stumpf, S. and McDonnell, J.T. (1999). Relating argument to design problem framing. Proceedings 4th International Design Thinking Research Symposium (DTRS99) 23-25 April, Cambridge, MA.
  53. Shinsel, A., Kulesza, T., Burnett, M., Curran, W., Groce, A., Stumpf, S. … Wong, W.-.K. Mini-Crowdsourcing End-User Assessment of Intelligent Assistants: A Cost-Benefit Study.

Journal articles (19)

  1. Gunning, D., Stefik, M., Choi, J., Miller, T., Stumpf, S. and Yang, G.-.Z. (2019). XAI—Explainable artificial intelligence. Science Robotics, 4(37). doi:10.1126/scirobotics.aay7120.
  2. Tewell, J., O’Sullivan, D., Maiden, N., Lockerbie, J. and Stumpf, S. (2019). Monitoring meaningful activities using small low-cost devices in a smart home. Personal and Ubiquitous Computing. doi:10.1007/s00779-019-01223-2.
  3. Stumpf, S. and Nichols, J. (2018). Welcome letter. Proceedings of the ACM on Human-Computer Interaction, 2(EICS).
  4. Stumpf, S., Skrebe, S., Aymer, G. and Hobson, J. (2018). Explaining smart heating systems to discourage fiddling with optimized behavior. CEUR Workshop Proceedings, 2068.
  5. Bussone, A., Stumpf, S. and Wilson, S. (2017). The use of online forums by people living with HIV for help in understanding personal health information. International Journal of Medical Informatics, 108, pp. 64–70. doi:10.1016/j.ijmedinf.2017.10.001.
  6. Frankowska-Takhari, S., MacFarlane, A., Goker, A. and Stumpf, S. (2017). Selecting and tailoring of images for visual impact in online journalism. INFORMATION RESEARCH-AN INTERNATIONAL ELECTRONIC JOURNAL, 22(1).
  7. Burnett, M., Stumpf, S., Makri, S., Macbeth, J., Beckwith, L., Kwan, I. … Jernigan, W. (2016). GenderMag: A Method for Evaluating Software’s Gender Inclusiveness. Interacting with Computers. doi:10.1093/iwc/iwv046.
  8. Göker, A., Butterworth, R., MacFarlane, A., Ahmed, T.S. and Stumpf, S. (2016). Expeditions through image jungles: The commercial use of image libraries in an online environment. Journal of Documentation, 72(1), pp. 5–23. doi:10.1108/JD-01-2014-0019.
  9. Groce, A., Kulesza, T., Zhang, C., Shamasunder, S., Burnett, M., Wong, W.K. … McIntosh, K. (2014). You are the only possible oracle: Effective test selection for end users of interactive machine learning systems. IEEE Transactions on Software Engineering, 40(3), pp. 307–323. doi:10.1109/TSE.2013.59.
  10. Mera, M. and Stumpf, S. (2014). Eye-tracking Film Music. Music and the Moving Image, 7(3), pp. 3–23.
  11. Das, S., Moore, T., Wong, W.K., Stumpf, S., Oberst, I., McIntosh, K. … Burnett, M. (2013). End-user feature labeling: Supervised and semi-supervised approaches based on locally-weighted logistic regression. Artificial Intelligence, 204, pp. 56–74. doi:10.1016/j.artint.2013.08.003.
  12. Markova, M.S., Wilson, S. and Stumpf, S. (2012). Tangible user interfaces for learning. International Journal of Technology Enhanced Learning, 4(3-4), pp. 139–155. doi:10.1504/IJTEL.2012.051578.
  13. Kulesza, T., Stumpf, S., Wong, W.-.K., Burnett, M., Perona, S., Ko, A. … Oberst, I. (2011). Why-Oriented End-User Debugging of Naïve Bayes Text Classification. Transactions on Interactive Intelligent Systems, 1(1).
  14. Kulesza, T., Stumpf, S., Wong, W.K., Burnett, M.M., Perona, S., Ko, A. … Oberst, I. (2011). Why-oriented end-user debugging of naive Bayes text classification. Transactions on Interactive Intelligent Systems, 1(1). doi:10.1145/2030365.2030367.
  15. Kulesza, T., Stumpf, S., Wong, W.K., Burnett, M.M., Perona, S., Ko, A. … Oberst, I. (2011). Why-oriented end-user debugging of naive Bayes text classification. ACM Transactions on Interactive Intelligent Systems, 1(1). doi:10.1145/2030365.2030367.
  16. Metoyer, R., Stumpf, S., Neumann, C., Dodge, J., Cao, J. and Schnabel, A. (2010). Explaining how to play real-time strategy games. Knowledge-Based Systems, 23(4), pp. 295–301. doi:10.1016/j.knosys.2009.11.006.

    [publisher’s website]

  17. Stumpf, S., Rajaram, V., Li, L., Wong, W.-.K., Burnett, M., Dietterich, T. … Herlocker, J. (2009). Interacting meaningfully with machine learning systems: Three experiments. International Journal of Human Computer Studies, 67(8), pp. 639–662. doi:10.1016/j.ijhcs.2009.03.004.

    [publisher’s website]

  18. Stumpf, S. and McDonnell, J. (2004). An investigation into sharing metadata: "I'm not thinking what you are thinking". Journal of Universal Computer Science, 10(6), pp. 740–748. doi:10.3217/jucs-010-06-0740.

    [publisher’s website]

  19. Stumpf, S.C. and McDonnell, J.T. (2002). Talking about team framing: Using argumentation to analyse and support experiential learning in early design episodes. Design Studies, 23(1), pp. 5–23. doi:10.1016/S0142-694X(01)00020-5.

Reports (9)

  1. Schleith, J., Stumpf, S. and Kulesza, T. (2012). People-Powered Music: Using User-Generated
    Tags and Structure in Recommendations.
    London, UK: Centre for Human Computer Interaction Design, City University London.
  2. Stumpf, S., Burnett, M., Pipek, V. and Wong, W.-.K. (2012). End-user interactions with intelligent and autonomous systems. ACM. ISBN 978-1-4503-1016-1.
  3. Seifert, E., Stumpf, S., Herlocker, J. and Wynn, E. (2008). Browsing for information on the web and in the file system. School of Electrical Engineering and Computer Science, Oregon State University.
  4. Stumpf, S. and Sasse, A. (2005). BioPII Akzeptanzstudie Abschlussbericht..
  5. Stumpf, S. (1998). Between a rock and a hard place: argumentation theory between rationalistic and interpretivist standpoints. Computer Science Department, University College London.
  6. Stumpf, S. (1997). Argumentation-based design rationale - the sharpest tools in the box. Computer Science Department, University College London.
  7. Stumpf, S., Burnett, M., Rajaram, V. and Herlocker, J. Supporting knowledge workers in practice: how do they understand and use work units? School of Electrical Engineering and Computer Science, Oregon State University.
  8. Rajaram, V., Stumpf, S., Burnett, M., Dragunov, A., Wick, E., Lynn, J. … Herlocker, J. Getting to the information you already have. School of Electrical Engineering and Computer Science, Oregon State University.
  9. Stumpf, S., Burnett, M., Dietterich, T.G., Johnsrude, K. and Herlocker, J. Recovery from Interruptions: Knowledge Workers’ Strategies, Failures and Envisioned Solutions. School of Electrical Engineering and Computer Science, Oregon State University.

Thesis/dissertation

  1. Stumpf, S. Analysis and representation of rhetorical construction of understanding in design teams' experiential learning. (PhD Thesis)

Education

Taught Modules

Module Leader, INM313 Inclusive Design
Module Leader, INM711 Readings in HCI