People
  1. Students
  2. Alumni
  3. Honorary Graduates
  4. Academic Experts
People

Contact Information

Contact

Visit Alessandro De Martino

E219, Drysdale Building

null

Postal Address

City, University of London
Northampton Square
London
EC1V 0HB
United Kingdom

About

Qualifications

Habilitation in Theoretical Solid State Physics, Heinrich-Heine-Universität Düsseldorf, 2005

Doctor Philosophiae in Theory of Elementary Particles, International School for Advanced Studies Trieste, 1998

Laurea in Physics, University of Naples "Federico II", 1994

Employment

2012- to date City University London, Senior Lecturer

2008-2012 Universität zu Köln, Assistant professor

2005-2007 Heinrich-Heine-Universität Düsseldorf, Assistant professor

2005 Imperial College London, Research assistant

2001-2004 Heinrich-Heine-Universität Düsseldorf, Research assistant

1999-2000 Ecole Normale de Lyon, Research assistant

Research

Research

Mescoscopic physics

Publications

Chapter

  1. De Martino, A., Hütten, A. and Egger, R. (2013). Landau Levels and Edge States in Graphene with Strong Spin-Orbit Coupling. In Egger, R., Matrasulov, D. and Rakhimov, K. (Eds.), Low-Dimensional Functional Materials (pp. 97–117). Springer Netherlands.

Conference Papers and Proceedings (3)

  1. De Martino, A. and Egger, R. (2005). Effective theory of superconductivity in carbon nanotube ropes. Statistical Physics and Beyond 6 Sep 2004 – 10 Sep 2004, Mexico City (MEXICO).
  2. De Martino, A. and Egger, R. (2002). Electron spin resonance theory for carbon nanotubes. 16th International Winterschool on Electronic Properties of Novel Materials 2-9 March, KIRCHBERG, AUSTRIA.
  3. De Martino, A. (2000). Magnetization plateaux in periodically modulated 1D systems: effect of doping and disorder. Non-perturbative Quantum Effects 2000 7-13 September, Paris (FRANCE).

Internet Publication

  1. De Martino, A. and Egger, R. (2003). Superconductivity in carbon nanotube ropes: Ginzburg-Landau approach and the role of quantum phase slips..

Journal Articles (45)

  1. De Martino, A. and Egger, R. (2017). Two-electron bound states near a Coulomb impurity in gapped graphene. Physical Review B, 95(8) . doi:10.1103/PhysRevB.95.085418.
  2. De Martino, A. and Egger, R. (2017). Two-electron bound states near a Coulomb impurity in gapped graphene. Physical Review B, 95 . doi:10.1103/PhysRevB.95.085418.
  3. Cohnitz, L., De Martino, A., Häusler, W. and Egger, R. (2016). Chiral interface states in graphene p-n junctions. Physical Review B, 94(16) . doi:10.1103/PhysRevB.94.165443.
  4. De Martino, A., Klöpfer, D., Matrasulov, D. and Egger, R. (2014). Electric-dipole-induced universality for Dirac fermions in graphene. Physical Review Letters, 112(18) . doi:10.1103/PhysRevLett.112.186603.
  5. Klöpfer, D., De Martino, A., Matrasulov, D.U. and Egger, R. (2014). Scattering theory and ground-state energy of Dirac fermions in graphene with two Coulomb impurities. European Physical Journal B, 87(8) . doi:10.1140/epjb/e2014-50414-8.
  6. Klöpfer, D., De Martino, A. and Egger, R. (2013). Bound states and supercriticality in graphene-based topological insulators. Crystals, 3(1), pp. 14–27. doi:10.3390/cryst3010014.
  7. De Martino, A., Hütten, A. and Egger, R. (2011). Landau levels, edge states, and strained magnetic waveguides in graphene monolayers with enhanced spin-orbit interaction. Physical Review B - Condensed Matter and Materials Physics, 84(15) . doi:10.1103/PhysRevB.84.155420.
  8. Dell'Anna, L. and De Martino, A. (2011). Magnetic superlattice and finite-energy Dirac points in graphene. Physical Review B - Condensed Matter and Materials Physics, 83(15) . doi:10.1103/PhysRevB.83.155449.
  9. Altland, A., De Martino, A., Egger, R. and Narozhny, B. (2010). Fluctuation relations and rare realizations of transport observables. Physical Review Letters, 105(17) . doi:10.1103/PhysRevLett.105.170601.
  10. Altland, A., De Martino, A., Egger, R. and Narozhny, B. (2010). Transient fluctuation relations for time-dependent particle transport. Physical Review B - Condensed Matter and Materials Physics, 82(11) . doi:10.1103/PhysRevB.82.115323.
  11. Schulz, A., De Martino, A. and Egger, R. (2010). Spin-orbit coupling and spectral function of interacting electrons in carbon nanotubes. Physical Review B - Condensed Matter and Materials Physics, 82(3) . doi:10.1103/PhysRevB.82.033407.
  12. Egger, R., De Martino, A., Siedentop, H. and Stockmeyer, E. (2010). Multiparticle equations for interacting Dirac fermions in magnetically confined graphene quantum dots. Journal of Physics A: Mathematical and Theoretical, 43(21) . doi:10.1088/1751-8113/43/21/215202.
  13. Bercioux, D. and De Martino, A. (2010). Spin-resolved scattering through spin-orbit nanostructures in graphene. Physical Review B - Condensed Matter and Materials Physics, 81(16) . doi:10.1103/PhysRevB.81.165410.
  14. De Martino, A. and Egger, R. (2010). On the spectrum of a magnetic quantum dot in graphene. Semiconductor Science and Technology, 25(3) . doi:10.1088/0268-1242/25/3/034006.
  15. Dell'Anna, L. and De Martino, A. (2009). Wave-vector-dependent spin filtering and spin transport through magnetic barriers in graphene. Physical Review B - Condensed Matter and Materials Physics, 80(15) . doi:10.1103/PhysRevB.80.155416.
  16. Dell'Anna, L. and De Martino, A. (2009). Erratum: Multiple magnetic barriers in graphene (Physical Review B - Condensed Matter and Materials Physics (2009) 79 (045420)). Physical Review B - Condensed Matter and Materials Physics, 80(8) . doi:10.1103/PhysRevB.80.089901.
  17. De Martino, A., Egger, R. and Gogolin, A.O. (2009). Phonon-phonon interactions and phonon damping in carbon nanotubes. Physical Review B - Condensed Matter and Materials Physics, 79(20) . doi:10.1103/PhysRevB.79.205408.
  18. Schulz, A., De Martino, A., Ingenhoven, P. and Egger, R. (2009). Low-energy theory and RKKY interaction for interacting quantum wires with Rashba spin-orbit coupling. Physical Review B - Condensed Matter and Materials Physics, 79(20) . doi:10.1103/PhysRevB.79.205432.
  19. Lunde, A.M., De Martino, A., Schulz, A., Egger, R. and Flensberg, K. (2009). Electron-electron interaction effects in quantum point contacts. New Journal of Physics, 11 . doi:10.1088/1367-2630/11/2/023031.
  20. Dell'Anna, L. and De Martino, A. (2009). Multiple magnetic barriers in graphene. Physical Review B - Condensed Matter and Materials Physics, 79(4) . doi:10.1103/PhysRevB.79.045420.
  21. Häusler, W., De Martino, A., Ghosh, T.K. and Egger, R. (2008). Tomonaga-Luttinger liquid parameters of magnetic waveguides in graphene. Physical Review B - Condensed Matter and Materials Physics, 78(16) . doi:10.1103/PhysRevB.78.165402.
  22. Ghosh, T.K., De Martino, A., Häusler, W., Dell'Anna, L. and Egger, R. (2008). Conductance quantization and snake states in graphene magnetic waveguides. Physical Review B - Condensed Matter and Materials Physics, 77(8) . doi:10.1103/PhysRevB.77.081404.
  23. De Martino, A., Dell'Anna, L. and Egger, R. (2007). Magnetic barriers and confinement of Dirac-Weyl quasiparticles in graphene. Solid State Communications, 144(12), pp. 547–550. doi:10.1016/j.ssc.2007.03.062.
  24. De Martino, A., Dell'Anna, L. and Egger, R. (2007). Magnetic confinement of massless dirac fermions in graphene. Physical Review Letters, 98(6) . doi:10.1103/PhysRevLett.98.066802.
  25. De Martino, A., Egger, R. and Tsvelik, A.M. (2006). Nonlinear magnetotransport in interacting chiral nanotubes. Physical Review Letters, 97(7) . doi:10.1103/PhysRevLett.97.076402.
  26. De Martino, A. and Egger, R. (2005). Rashba spin-orbit coupling and spin precession in carbon nanotubes. Journal of Physics Condensed Matter, 17(36), pp. 5523–5532. doi:10.1088/0953-8984/17/36/008.
  27. De Martino, A., Thorwart, M., Egger, R. and Graham, R. (2005). Exact results for one-dimensional disordered bosons with strong repulsion. Physical Review Letters, 94(6) . doi:10.1103/PhysRevLett.94.060402.
  28. Ferrier, M., De Martino, A., Kasumov, A., Guéron, S., Kociak, M., Egger, R. and Bouchiat, H. (2004). Superconductivity in ropes of carbon nanotubes. Solid State Communications, 131(9-10 SPEC. ISS.), pp. 615–623. doi:10.1016/j.ssc.2004.05.044.
  29. De Martino, A. and Egger, R. (2004). Effective low-energy theory of superconductivity in carbon nanotube ropes. Physical Review B - Condensed Matter and Materials Physics, 70(1) . doi:10.1103/PhysRevB.70.014508.
  30. De Martino, A., Egger, R., Murphy-Armando, F. and Hallberg, K. (2004). Spin-orbit coupling and electron spin resonance for interacting electrons in carbon nanotubes. Journal of Physics Condensed Matter, 16(17) . doi:10.1088/0953-8984/16/17/002.
  31. De Martino, A. and Egger, R. (2003). Acoustic phonon exchange, attractive interactions, and the Wentzel-Bardeen singularity in single-wall nanotubes. Physical Review B - Condensed Matter and Materials Physics, 67(23), pp. 2354181–23541810.
  32. Cabra, D.C., De Martino, A., Pujol, P. and Simon, P. (2002). Hubbard ladders in a magnetic field. Europhysics Letters, 57(3), pp. 402–408. doi:10.1209/epl/i2002-00475-5.
  33. De Martino, A. and Egger, R. (2001). Esr theory for interacting 1D quantum wires. Europhysics Letters, 56(4), pp. 570–575. doi:10.1209/epl/i2001-00558-3.
  34. De Martino, A., Egger, R., Hallberg, K. and Balseiro, C.A. (2001). Spin-orbit coupling and ESR theory for carbon nanotubes. Physical Review Letters, 88(20), pp. 206402–206402. doi:10.1103/PhysRevLett.88.206402.

    [publisher’s website]

  35. Cabra, D.C., De Martino, A., Honecker, A., Pujol, P. and Simon, P. (2001). Emergence of irrationality: Magnetization plateaus in modulated hubbard chains. Physical Review B - Condensed Matter and Materials Physics, 63(9), pp. 944061–9440615.
  36. Cabra, D.C., De Martino, A., Grynberg, M.D., Peysson, S. and Pujol, P. (2000). Random bond XXZ chains with modulated couplings. Physical Review Letters, 85(22), pp. 4791–4794. doi:10.1103/PhysRevLett.85.4791.
  37. Cabra, D.C., De Martino, A., Honecker, A., Pujol, P. and Simon, P. (2000). Doping-dependent magnetization plateaux in p-merized Hubbard chains. Physics Letters, Section A: General, Atomic and Solid State Physics, 268(4-6), pp. 418–423. doi:10.1016/S0375-9601(00)00210-3.
  38. Moriconi, M. and De Martino, A. (1999). Quantum integrability of certain boundary conditions. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 447(3-4), pp. 292–297.
  39. De Martino, A. and Moriconi, M. (1999). Boundary S-matrix for the Gross-Neveu model. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 451(3-4), pp. 354–364.
  40. De Martino, A. and Moriconi, M. (1998). Tricritical Ising model with a boundary. Nuclear Physics B, 528(3), pp. 577–594.
  41. De Martino, A., Moriconi, M. and Mussardo, G. (1998). Reflection scattering matrix of the Ising model in a random boundary magnetic field. Nuclear Physics B, 509(3), pp. 615–636.
  42. DEMARTINO, A. and MUSTO, R. (1995). ABELIAN HALL FLUIDS AND EDGE STATES - A CONFORMAL FIELD-THEORY APPROACH. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 9(21), pp. 2839–2855.
  43. De Martino, A. and Musto, R. (1995). Knizhnik-Zamolodchikov equation and extended symmetry for stable Hall states. Mod. Phys. Lett. A 10, 2051 (1995) . doi:10.1142/S0217732395002209.

    [publisher’s website]

  44. De Martino, A. and Musto, R. (1995). Abelian Hall Fluids and Edge States: a Conformal Field Theory Approach. Int. J. Mod. Phys. B 9, 2839 (1995) . doi:10.1142/S0217979295001063.

    [publisher’s website]

  45. Cohnitz, L., Martino, A.D., Häusler, W. and Egger, R. Proximity-induced superconductivity in Landau-quantized graphene
    monolayers.
    .

Education

Undergraduate teaching

MA2604 Calculus of several variables (2012-2014)
MA3611 Mathematical models and modelling (2012-2014)

MA1621 Introduction to modelling (2015)

Find us

City, University of London

Northampton Square

London EC1V 0HB

United Kingdom

Back to top

City, University of London is an independent member institution of the University of London. Established by Royal Charter in 1836, the University of London consists of 18 independent member institutions with outstanding global reputations and several prestigious central academic bodies and activities.