1. Academic experts
  2. Research students
  3. Students
  4. Alumni
  5. Senior people at City
  6. Non-academic staff
  7. Honorary graduates

Contact Information


Visit Maud De Visscher

E230, Drysdale Building

Postal Address

City, University of London
Northampton Square
United Kingdom



Dr De Visscher studied at the Free University of Brussels graduating with a Licence in Mathematical Science in 1999. As part of her degree she spent one year as an Erasmus students at the University of East Anglia, graduating with a MSc in pure Mathematics in 1998. She prepared her PhD at the University of Oxford in 2000-2003. After working at Queen Mary College London, she joined City University London in 2005.


DPhil Mathematics, Oxford University, 2003
Licence Mathematics, Free University of Brussels, 1999
Aggregation Teaching Qualification, Free University of Brussels, 1999
MSc Mathematics, University of East Anglia, 1998


02/2003 - 09/2005: Queen Mary University of London, EPSRC Postdoctoral Research Assistant

10/2005 - present: City University London, Lecturer

Membership of professional bodies

02/2003 London Mathematical Society, Associate Member


Dr De Visscher's research interests are in algebra, more specifically in the representation theory of algebraic groups and related finite groups and finite dimensional algebras. Her recent projects have been focusing on the representations of the (walled) Brauer and partition algebras and connections with the symmetric group.

Research Students

Oliver King

Thesis title: Modular representation theory of diagram algebras


Conference paper/proceedings

  1. De Visscher, M., Bowman, C. and Orellana, R. (2013). The partition algebra and the Kronecker product (Extended Abstract). FPSAC2013 24-28 June, Paris, France.

Journal articles (16)

  1. Bowman, C., De Visscher, M. and Enyang, J. (2019). Simple Modules for the Partition Algebra and Monotone Convergence of Kronecker Coefficients. International Mathematics Research Notices, 2019(4), pp. 1059–1097. doi:10.1093/imrn/rnx095.
  2. De Visscher, M. and Martin, P.P. (2016). On Brauer algebra simple modules over the complex field. Transactions of the American Mathematical Society, 369(3), pp. 1579–1609. doi:10.1090/tran/6716.
  3. Bowman, C., De Visscher, M. and King, O. (2015). The Blocks of the Partition Algebra in Positive Characteristic. Algebras and Representation Theory, 18(5), pp. 1357–1388. doi:10.1007/s10468-015-9544-9.
  4. Bowman, C., De Visscher, M. and Orellana, R. (2014). The partition algebra and the Kronecker coefficients. Transactions of the American Mathematical Society, 367(5), pp. 3647–3667. doi:10.1090/s0002-9947-2014-06245-4.
  5. Bowman, C., Cox, A.G. and De Visscher, M. (2013). Decomposition numbers for the cyclotomic Brauer algebras in
    characteristic zero.
    J Algebra, 378, pp. 80–102.
  6. Cox, A. and De Visscher, M. (2011). Diagrammatic Kazhdan-Lusztig theory for the (walled) Brauer algebra. JOURNAL OF ALGEBRA, 340(1), pp. 151–181. doi:10.1016/j.jalgebra.2011.05.024.
  7. Cox, A., De Visscher, M. and Martin, P. (2011). Alcove geometry and a translation principle for the Brauer algebra. Journal of Pure and Applied Algebra, 215(4), pp. 335–367. doi:10.1016/j.jpaa.2010.04.023.
  8. Cox, A., De Visscher, M. and Martin, P. (2009). A geometric characterisation of the blocks of the Brauer algebra. J LOND MATH SOC, 80, pp. 471–494. doi:10.1112/jlms/jdp039.
  9. Cox, A., De Visscher, M. and Martin, P. (2009). The blocks of the Brauer algebra in characteristic zero. Representation Theory, 13, pp. 272–308. doi:10.1090/S1088-4165-09-00305-7.

    [publisher’s website]

  10. Cox, A., De Visscher, M., Doty, S. and Martin, P. (2008). On the blocks of the walled Brauer algebra. J ALGEBRA, 320(1), pp. 169–212. doi:10.1016/j.jalgebra.2008.01.026.
  11. De Visscher, M. (2008). On the blocks of semisimple algebraic groups and associated generalized Schur algebras. Journal of Algebra, 319(3), pp. 952–965. doi:10.1016/j.jalgebra.2007.11.015.
  12. De Visscher, M. (2006). A note on the tensor product of restricted simple modules for algebraic groups. Journal of Algebra, 303, pp. 407–415.
  13. De Visscher, M. and Donkin, S. (2005). On projective and injective polynomial modules. MATH Z, 251(2), pp. 333–358. doi:10.1007/s00209-005-0805-x.
  14. De Visscher, M. (2005). Quasi-hereditary quotients of finite Chevalley groups and Frobenius kernels. Quarterly Journal of Mathematics, 56, pp. 111–121.
  15. De Visscher, M. (2002). Extensions of modules for SL(2,K). J ALGEBRA, 254(2), pp. 409–421.
  16. Barbier, S., Cox, A. and Visscher, M.D. The blocks of the periplectic Brauer algebra in positive characteristic. .


Teaching for 2013-14

MA1610 Mathematical Communication
MA1200 Mathematics for Economists post GCSE (1)
MA2XXX Mathematical Typesetting