People
  1. Students
  2. Alumni
  3. Honorary Graduates
  4. Academic Experts
People

portrait of Professor Andreas Fring

Professor Andreas Fring

Professor of Mathematical Physics

School of Mathematics, Computer Science & Engineering, Department of Mathematics

Contact Information

Contact

Visit Andreas Fring

E217, Drysdale Building

null

Postal Address

City, University of London
Northampton Square
London
EC1V 0HB
United Kingdom

About

Overview

Professor Andreas Fring studied physics at the Technische Universität München and the University of London. He received a PhD in theoretical physics in 1992 from Imperial College London. He became a member of the Department of Mathematics in 2004, where he was promoted to Reader in 2005 and subsequently to Professor of Mathematical Physics in 2008. Before joining City University London he held postdoc positions between 1992 and 1994 at the Universidade de São Paulo (São Carlos, Brazil) and the University of Wales (Swansea, UK). From 1994 until 2004 he was Wissenschaftlicher Mitarbeiter in the Department of Physics at the Freie Universität Berlin.

Qualifications

PhD Theoretical Physics, Imperial College London, 1992
MSc Theoretical Physics, Imperial College London, 1989
BSc Physics, University of London, 1988
Vordiplom Physics, Technische Universität München, 1986

Employment

2008 - to date City University London, Professor
2005 - 2008 City University London, Reader
2004 - 2005 City University London, Lecturer
1994 - 2004 Freie Universität Berlin, C1 Research & Teaching Assistant
1993 - 1994 University of Wales, Senior Research Assistant
1992 - 1993 Universidade de São Paulo, Research Assistant
1992 - 1992 Imperial College London, Research Assistant

Other appointments

1984 - 1988 European Southern Observatory
1987 Royal Greenwich Observatory

Publications

- Local list (with downloadable pdf)
- City Research online open access
- Google scholar
- arXiv
- SPIRES (High Energy Physics Literature Database)

Recent talks

- 06/11, Quantum Physics with non-Hermitian operators (Dresden, Germany)
- 09/11, PT Quantum Mechanics Symposium (Heidelberg, Germany)
- 01/12, UK-Japan winter school (Oxford, UK)

Research

Research interests

His main field of research is mathematical physics with a focus on integrable quantum field theories and quantum mechanics. He co-authored around one hundred articles published in international journals and conference proceedings on topics including the form factor approach to integrable quantum field theories, factorised scattering theory, the thermodynamic Bethe Ansatz, representation theory of Virasoro algebras and Coxeter/Weyl reflection groups, high energy laser physics, pseudo-Hermitian quantum mechanical systems and noncommutative space-time structures.

Current research

- Integrable quantum field theory
- High intensity laser physics
- Pseudo-Hermitian Hamiltonian systems in quantum physics

Recent Keynote speeches and lectures

Pseudo-Hermitian Hamiltonians in Quantum Physics XII
July 2013, Koc University, Istanbul (Turkey)
International conference: Pseudo-Hermitian Hamiltonians in Quantum Physics XII pdf slides
Introduction to non-Hermitian Hamiltonian systems with PT symmetry, applications to integrable systems
January 2012, Oxford University (UK)
UK-Japan winter school : pdf slides

Research Students

Name
Andrea Cavaglia
Thesis Title
Compactons: Nonanalytic nonlinear wave solutions
Further Information
Date of start: 01 May 2010
Name
Sanjib Dey
Thesis Title
Quantum mechanics and quantum field theory in noncommutative space
Further Information
Date of start: 01 Oct 2011
Name
Paulo Eduardo Gonçalves de Assis
Thesis Title
Non-Hermitian Hamiltonians in Field Theory
Further Information
The thesis is centred around the role of non-Hermitian Hamiltonians in Physics both at the quantum and classical levels. Completed 2009.
Name
Monique Smith
Thesis Title
Antilinear deformations of Coxeter groups with application to Hamiltonian systems
Further Information
The thesis provides several different systematic methods for constructing complex root spaces that remain invariant under an antilinear transformation. The first method is based on any element of the Weyl group, which is extended to factorizations of the Coxeter element and a reduced Coxeter element thereafter. An antilinear deformation method for the longest element of the Weyl group is provided. The last construction method leads to an alternative construction for q-deformed roots. Completed in 2012.

Publications

  1. Dey, S., Fring, A. and Gouba, L. (2015). Milne quantization for non-Hermitian systems. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 48(40) . doi:10.1088/1751-8113/48/40/40FT01.
  2. Fring, A. (2015). E2-quasi-exact solvability for non-Hermitian models. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 48(14) . doi:10.1088/1751-8113/48/14/145301.
  3. Dey, S. and Fring, A. (2014). Noncommutative quantum mechanics in a time-dependent background. PHYSICAL REVIEW D, 90(8) . doi:10.1103/PhysRevD.90.084005.
  4. Dey, S., Fring, A. and Mathanaranjan, T. (2014). Non-Hermitian systems of Euclidean Lie algebraic type with real energy spectra. ANNALS OF PHYSICS, 346, pp. 28–41. doi:10.1016/j.aop.2014.04.002.
  5. Bender, C.M., Fring, A. and Komijani, J. (2014). Nonlinear eigenvalue problems. Journal of Physics A: Mathematical and Theoretical, 47(23), pp. 235204–235204. doi:10.1088/1751-8113/47/23/235204.
  6. Fring, A. and Bagarello, F. (2013). A non self-adjoint model on a two dimensional
    noncommutative space with unbound metric.
    Physical Review A: Atomic, Molecular and Optical Physics, 88, p. 042119. doi:10.1103/PhysRevA.88.042119.
  7. Fring, A. and Dey, S. (2013). Bohmian quantum trajectories from coherent states. Physical Review A: Atomic, Molecular and Optical Physics, 88, p. 022116. doi:10.1103/PhysRevA.88.022116.
  8. Fring, A., Dey, S, and Khantoul, B. (2013). Hermitian versus non-Hermitian representations for minimal length uncertainty relations. Journal of Physics A: Mathematical and Theoretical, 46, pp. 335304–335304. doi:10.1088/1751-8113/46/33/335304.
  9. Fring, A., Dey, S., Gouba, L. and Castro, P.G. (2013). Time-dependent q-deformed coherent states for generalized uncertainty relations. Physical Review D: Particles, Fields, Gravitation and Cosmology, 87 . doi:10.1103/PhysRevD.87.084033.
  10. Fring, A. (2013). PT-symmetric deformations of integrable models. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371, p. 20120046. doi:10.1098/rsta.2012.0046.

    [publisher’s website]

  11. Dey, S. and Fring, A. (2012). Squeezed coherent states for noncommutative spaces with minimal length uncertainty relations. Physical Review D - Particles, Fields, Gravitation and Cosmology, 86(6) . doi:10.1103/PhysRevD.86.064038.
  12. Fring, A. and Smith, M. (2012). Non-Hermitian multi-particle systems from complex root spaces. Journal of Physics A: Mathematical and Theoretical, 45(8) . doi:10.1088/1751-8113/45/8/085203.
  13. Cavaglia, A. and Fring, A. (2012). PT-symmetrically deformed shock waves. Journal of Physics A: Mathematical and Theoretical, 45(44) . doi:10.1088/1751-8113/45/44/444010.
  14. Bender, C., Fring, A., Günther, U. and Jones, H. (2012). Quantum physics with non-Hermitian operators. Journal of Physics A: Mathematical and Theoretical, 45(44) . doi:10.1088/1751-8113/45/44/440301.
  15. Cavaglia, A., Fring, A. and Bagchi, B. (2011). PT-symmetry breaking in complex nonlinear wave equations and their deformations. J PHYS A-MATH THEOR, 44(32) . doi:10.1088/1751-8113/44/32/325201.
  16. Fring, A., Gouba, L. and Scholtz, F.G. (2010). Strings from position-dependent noncommutativity. J PHYS A-MATH THEOR, 43(34) . doi:10.1088/1751-8113/43/34/345401.
  17. Fring, A. and Smith, M. (2010). Antilinear deformations of Coxeter groups, an application to Calogero models. J PHYS A-MATH THEOR, 43(32) . doi:10.1088/1751-8113/43/32/325201.
  18. Castro-Alvaredo, O.A. and Fring, A. (2009). A spin chain model with non-Hermitian interaction: the Ising quantum spin chain in an imaginary field. J PHYS A-MATH THEOR, 42(46) . doi:10.1088/1751-8113/42/46/465211.
  19. Assis, P.E.G. and Fring, A. (2009). Non-Hermitian Hamiltonians of Lie algebraic type. J PHYS A-MATH THEOR, 42(1) . doi:10.1088/1751-8113/42/1/015203.

Conference Papers and Proceedings (7)

  1. Castro Alvaredo, O. and Fring, A. (2003). Integrable models with unstable particles. July, Faro (Portugal).
  2. Castro Alvaredo, O. and Fring, A. (2002). Applications of quantum integrable systems. September, Moscow (Russia).
  3. Castro Alvaredo, O. and Fring, A. (2002). Conductance from Non-perturbative Methods II. July, São Paulo (Brazil).
  4. Castro Alvaredo, O. and Fring, A. (2002). Aspects of locality in the form factor program. World Scientific, Singapore.
  5. Castro Alvaredo, O. and Fring, A. (2001). Mutually local fields from form factors. December, Edinburgh, UK.
  6. Castro Alvaredo, O. and Fring, A. (2001). Mutually local fields from form factors. October, Tianjin, China.
  7. Castro Alvaredo, O. and Fring, A. (2001). Mutually local fields from form factors. September, Yerevan (Armenia).

Journal Articles (112)

  1. Fring, A. and Frith, T. (2017). Mending the broken PT-regime via an explicit time-dependent Dyson map. PHYSICS LETTERS A, 381(29), pp. 2318–2323. doi:10.1016/j.physleta.2017.05.041.
  2. Cen, J., Correa, F. and Fring, A. (2017). Time-delay and reality conditions for complex solitons. JOURNAL OF MATHEMATICAL PHYSICS, 58(3) . doi:10.1063/1.4978864.
  3. Bagarello, F. and Fring, A. (2017). From pseudo-bosons to pseudo-Hermiticity via multiple generalized Bogoliubov transformations. International Journal of Modern Physics B, 31(12), pp. 1750085–1750085. doi:10.1142/S0217979217500850.
  4. Fring, A. and Frith, T. (2017). Exact analytical solutions for time-dependent Hermitian Hamiltonian systems from static unobservable non-Hermitian Hamiltonians. PHYSICAL REVIEW A, 95(1) . doi:10.1103/PhysRevA.95.010102.
  5. Dey, S., Fring, A. and Hussin, V. (2017). Nonclassicality versus entanglement in a noncommutative space. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 31(1) . doi:10.1142/S0217979216502489.
  6. Fring, A. and Moussa, M.H.Y. (2016). Non-Hermitian Swanson model with a time-dependent metric. PHYSICAL REVIEW A, 94(4) . doi:10.1103/PhysRevA.94.042128.
  7. Cen, J. and Fring, A. (2016). Complex solitons with real energies. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 49(36) . doi:10.1088/1751-8113/49/36/365202.
  8. Correa, F. and Fring, A. (2016). Regularized degenerate multi-solitons. JOURNAL OF HIGH ENERGY PHYSICS, (9) . doi:10.1007/JHEP09(2016)008.
  9. Fring, A. and Moussa, M.H.Y. (2016). Unitary quantum evolution for time-dependent quasi-Hermitian systems with nonobservable Hamiltonians. PHYSICAL REVIEW A, 93(4) . doi:10.1103/PhysRevA.93.042114.
  10. Fring, A. (2016). A Unifying E2-Quasi Exactly Solvable Model. NON-HERMITIAN HAMILTONIANS IN QUANTUM PHYSICS, 184, pp. 235–248. doi:10.1007/978-3-319-31356-6_15.
  11. Khantoul, B. and Fring, A. (2015). Time-dependent massless Dirac fermions in graphene. Physics Letters, Section A: General, Atomic and Solid State Physics, 379(42), pp. 2704–2706. doi:10.1016/j.physleta.2015.08.011.
  12. Dey, S., Fring, A. and Gouba, L. (2015). Milne quantization for non-Hermitian systems. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 48(40) . doi:10.1088/1751-8113/48/40/40FT01.
  13. Bagarello, F. and Fring, A. (2015). Generalized Bogoliubov transformations versus D-pseudo-bosons. JOURNAL OF MATHEMATICAL PHYSICS, 56(10) . doi:10.1063/1.4933242.
  14. Fring, A. (2015). A new non-Hermitian E2-quasi-exactly solvable model. PHYSICS LETTERS A, 379(10-11), pp. 873–876. doi:10.1016/j.physleta.2015.01.008.
  15. Fring, A. (2015). E2-quasi-exact solvability for non-Hermitian models. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 48(14) . doi:10.1088/1751-8113/48/14/145301.
  16. Dey, S., Fring, A. and Mathanaranjan, T. (2014). Spontaneous PT-Symmetry Breaking for Systems of Noncommutative Euclidean Lie Algebraic Type. International Journal of Theoretical Physics, 54(11), pp. 4027–4033. doi:10.1007/s10773-014-2447-4.
  17. Dey, S. and Fring, A. (2014). Noncommutative quantum mechanics in a time-dependent background. PHYSICAL REVIEW D, 90(8) . doi:10.1103/PhysRevD.90.084005.
  18. Dey, S., Fring, A. and Mathanaranjan, T. (2014). Non-Hermitian systems of Euclidean Lie algebraic type with real energy spectra. ANNALS OF PHYSICS, 346, pp. 28–41. doi:10.1016/j.aop.2014.04.002.
  19. Bender, C.M., Fring, A. and Komijani, J. (2014). Nonlinear eigenvalue problems. Journal of Physics A: Mathematical and Theoretical, 47(23), pp. 235204–235204. doi:10.1088/1751-8113/47/23/235204.
  20. Fring, A. and Bagarello, F. (2013). A non self-adjoint model on a two dimensional
    noncommutative space with unbound metric.
    Physical Review A: Atomic, Molecular and Optical Physics, 88, p. 042119. doi:10.1103/PhysRevA.88.042119.
  21. Fring, A. and Dey, S. (2013). Bohmian quantum trajectories from coherent states. Physical Review A: Atomic, Molecular and Optical Physics, 88, p. 022116. doi:10.1103/PhysRevA.88.022116.
  22. Fring, A., Dey, S, and Khantoul, B. (2013). Hermitian versus non-Hermitian representations for minimal length uncertainty relations. Journal of Physics A: Mathematical and Theoretical, 46, pp. 335304–335304. doi:10.1088/1751-8113/46/33/335304.
  23. Fring, A., Dey, S., Gouba, L. and Castro, P.G. (2013). Time-dependent q-deformed coherent states for generalized uncertainty relations. Physical Review D: Particles, Fields, Gravitation and Cosmology, 87 . doi:10.1103/PhysRevD.87.084033.
  24. Fring, A. (2013). PT-symmetric deformations of integrable models. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371, p. 20120046. doi:10.1098/rsta.2012.0046.

    [publisher’s website]

  25. Fring, A. and Dey, S. (2013). The Two-dimensional Harmonic Oscillator on a Noncommutative Space with Minimal Uncertainties. Acta Polytechnica: journal of advanced engineering, 53, pp. 268–276.

    [publisher’s website]

  26. Dey, S., Fring, A. and Gouba, L. (2012). PT-symmetric non-commutative spaces with minimal volume uncertainty relations. Journal of Physics A: Mathematical and Theoretical, 45(38) . doi:10.1088/1751-8113/45/38/385302.
  27. Dey, S. and Fring, A. (2012). Squeezed coherent states for noncommutative spaces with minimal length uncertainty relations. Physical Review D - Particles, Fields, Gravitation and Cosmology, 86(6) . doi:10.1103/PhysRevD.86.064038.
  28. Fring, A. and Smith, M. (2012). Non-Hermitian multi-particle systems from complex root spaces. Journal of Physics A: Mathematical and Theoretical, 45(8) . doi:10.1088/1751-8113/45/8/085203.
  29. Cavaglia, A. and Fring, A. (2012). PT-symmetrically deformed shock waves. Journal of Physics A: Mathematical and Theoretical, 45(44) . doi:10.1088/1751-8113/45/44/444010.
  30. Bender, C., Fring, A., Günther, U. and Jones, H. (2012). Quantum physics with non-Hermitian operators. Journal of Physics A: Mathematical and Theoretical, 45(44) . doi:10.1088/1751-8113/45/44/440301.
  31. Cavaglia, A., Fring, A. and Bagchi, B. (2011). PT-symmetry breaking in complex nonlinear wave equations and their deformations. J PHYS A-MATH THEOR, 44(32) . doi:10.1088/1751-8113/44/32/325201.
  32. Fring, A. and Smith, M. (2011). PT Invariant Complex E (8) Root Spaces. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 50(4), pp. 974–981. doi:10.1007/s10773-010-0542-8.
  33. Fring, A., Gouba, L. and Scholtz, F.G. (2010). Strings from position-dependent noncommutativity. J PHYS A-MATH THEOR, 43(34) . doi:10.1088/1751-8113/43/34/345401.
  34. Fring, A. and Smith, M. (2010). Antilinear deformations of Coxeter groups, an application to Calogero models. J PHYS A-MATH THEOR, 43(32) . doi:10.1088/1751-8113/43/32/325201.
  35. Fring, A., Gouba, L. and Bagchi, B. (2010). Minimal areas from q-deformed oscillator algebras. J. Phys. A: Math. Theor.43:425202, 2010 . doi:10.1088/1751-8113/43/42/425202.

    [publisher’s website]

  36. Assis, P.E.G. and Fring, A. (2010). Compactons versus solitons. Pramana - Journal of Physics, 74(6), pp. 857–865. doi:10.1007/s12043-010-0078-8.
  37. Bagchi, B. and Fring, A. (2009). Minimal length in quantum mechanics and non-Hermitian Hamiltonian systems. PHYS LETT A, 373(47), pp. 4307–4310. doi:10.1016/j.physleta.2009.09.054.
  38. Castro-Alvaredo, O.A. and Fring, A. (2009). A spin chain model with non-Hermitian interaction: the Ising quantum spin chain in an imaginary field. J PHYS A-MATH THEOR, 42(46) . doi:10.1088/1751-8113/42/46/465211.
  39. Assis, P.E.G. and Fring, A. (2009). From real fields to complex Calogero particles. J PHYS A-MATH THEOR, 42(42) . doi:10.1088/1751-8113/42/42/425206.
  40. Fring, A. (2009). Particles versus fields in PT-symmetrically deformed integrable systems. PRAMANA-JOURNAL OF PHYSICS, 73(2), pp. 363–373. doi:10.1007/s12043-009-0128-2.
  41. Assis, P.E.G. and Fring, A. (2009). Integrable models from PT -symmetric deformations. J PHYS A-MATH THEOR, 42(10) . doi:10.1088/1751-8113/42/10/105206.
  42. Assis, P.E.G. and Fring, A. (2009). Non-Hermitian Hamiltonians of Lie algebraic type. J PHYS A-MATH THEOR, 42(1) . doi:10.1088/1751-8113/42/1/015203.
  43. Bagchi, B. and Fring, A. (2009). Comment on "Non-Hermitian Quantum Mechanics with Minimal Length Uncertainty". SYMMETRY INTEGR GEOM, 5 . doi:10.3842/SIGMA.2009.089.
  44. Bagchi, B. and Fring, A. (2008). PT-symmetric extensions of the supersymmetric Korteweg-de Vries equation. J PHYS A-MATH THEOR, 41(39) . doi:10.1088/1751-8113/41/39/392004.
  45. Assis, P.E.G. and Fring, A. (2008). The quantum brachistochrone problem for non-Hermitian Hamiltonians. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 41(24) . doi:10.1088/1751-8113/41/24/244002.
  46. Fring, A., Jones, H. and Znojil, M. (2008). 6th International Workshop on Pseudo-Hermitian Hamiltonians in Quantum Physics: Preface. Journal of Physics A: Mathematical and Theoretical, 41(24) . doi:10.1088/1751-8121/41/24/240301.
  47. Fring, A. and Znojil, M. (2008). PT -symmetric deformations of Calogero models. Journal of Physics A: Mathematical and Theoretical, 41(19) . doi:10.1088/1751-8113/41/19/194010.
  48. Castro Alvaredo, O., Fring, A. and Göhmann, F. (2008). On the absence of simultaneous reflection and transmission in integrable impurity systems. Submited to Phys. Lett. .
  49. Fring, A. (2007). PT-symmetry and Integrability. Acta Polytechnica 47 (2007) 44-49 .
  50. Faria, C.F.M. and Fring, A. (2007). Non-Hermitian Hamiltonians with real eigenvalues coupled to electric fields: From the time-independent to the time-dependent quantum mechanical formulation. LASER PHYS, 17(4), pp. 424–437. doi:10.1134/S1054660X07040196.
  51. Fring, A. (2007). PT -symmetric deformations of the Korteweg-de Vries equation. Journal of Physics A: Mathematical and Theoretical, 40(15), pp. 4215–4224.
  52. Fring, A. and Manojlovic, N. (2006). G(2)-Calogero-Moser Lax operators from reduction. J NONLINEAR MATH PHY, 13(4), pp. 467–478. doi:10.2991/jnmp.2006.13.4.1.
  53. Fring, A. and Korff, C. (2006). Non-crystallographic reduction of generalized Calogero-Moser models. J PHYS A-MATH GEN, 39(5), pp. 1115–1131. doi:10.1088/0305-4470/39/5/007.
  54. Figueira De Morisson Faria, C. and Fring, A. (2006). Time evolution of non-Hermitian Hamiltonian systems. Journal of Physics A: Mathematical and General, 39(29), pp. 9269–9289. doi:10.1088/0305-4470/39/29/018.
  55. De Morisson Faria, C.F. and Fring, A. (2006). Isospectral hamiltonians from moyal products. Czechoslovak Journal of Physics, 56(9), pp. 899–908. doi:10.1007/s10582-006-0386-x.
  56. Fring, A. and Korff, C. (2005). Affine Toda field theories related to Coxeter groups of noncrystallographic type. NUCL PHYS B, 729(3), pp. 361–386. doi:10.1016/j.nuclphysb.2005.08.044.
  57. Castro-Alvaredo, O. and Fring, A. (2005). Chaos in the thermodynamic Bethe ansatz. PHYS LETT A, 334(2-3), pp. 173–179. doi:10.1016/j.physleta.2004.11.009.
  58. Fring, A. (2005). Supersymmetric integrable scattering theories with unstable particles. J HIGH ENERGY PHYS, (1) . doi:10.1088/1126-6708/2005/01/030.
  59. Castro Alvaredo, O. and Fring, A. (2005). Integrable models with unstable particles. Progress in Mathematics, 237, p. 59.
  60. Fring, A. and Korff, C. (2004). Exactly solvable potentials of Calogero type for q-deformed Coxeter groups. J PHYS A-MATH GEN, 37(45), pp. 10931–10949. doi:10.1088/0305-4470/37/45/012.
  61. Castro-Alvaredo, A. and Fring, A. (2004). On vacuum energies and renomalizability in integrable quantum field theories. NUCL PHYS B, 687(3), pp. 303–322. doi:10.1016/j.nuclphysb.2004.04.005.
  62. Castro-Alvaredo, O.A. and Fring, A. (2004). Applications of quantum integrable systems. International Journal of Modern Physics A, 19(SUPPL. 2), pp. 92–116. doi:10.1142/S0217751X04020336.
  63. Castro-Alvaredo, O.A., Dreißig, J. and Fring, A. (2004). Integrable scattering theories with unstable particles. European Physical Journal C, 35(3), pp. 393–411.
  64. Castro Alvaredo, O. and Fring, A. (2004). Universal boundary reflection amplitudes. Nucl. Phys., B682, p. 551. doi:10.1016/j.nuclphysb.2004.01.009.
  65. Castro-Alvaredo, O.A. and Fring, A. (2003). Breathers in the elliptic sine-Gordon model. Journal of Physics A: Mathematical and General, 36(40), pp. 10233–10249. doi:10.1088/0305-4470/36/40/008.
  66. Castro-Alvaredo, O.A. and Fring, A. (2003). Rational sequences for the conductance in quantum wires from affine Toda field theories. Journal of Physics A: Mathematical and General, 36(26), pp. L425–L432. doi:10.1088/0305-4470/36/26/101.
  67. Castro Alvaredo, O. and Fring, A. (2003). Conductance from Non-perturbative Methods II. JHEP ,PRHEP-unesp2002/015; cond-mat/0210592 .
  68. Castro Alvaredo, O. and Fring, A. (2003). Conductance from Non-perturbative Methods I. JHEP ,PRHEP-unesp2002/010; cond-mat/0210599 .
  69. Castro Alvaredo, O. and Fring, A. (2003). From integrability to conductance, impurity systems. Nucl. Phys., B649, p. 449. doi:10.1016/S0550-3213(02)01029-5.
  70. Castro Alvaredo, O., Fring, A. and Figueira de Morisson Faria, C. (2003). Relativistic treatment of harmonics from impurity systems in quantum wires. Phys. Rev., B67, pp. 125405–125405. doi:10.1103/PhysRevB.67.125405.
  71. Fring, A. (2002). Mutually local fields from form factors. International Journal of Modern Physics B, 16(14-15), pp. 1915–1924. doi:10.1142/S0217979202011639.
  72. Castro-Alvaredo, O.A. and Fring, A. (2002). Finite temperature correlations functions from form factors. Nuclear Physics B, 636(1-2), pp. 611–631. doi:10.1016/S0550-3213(02)00409-1.
  73. Castro Alvaredo, O. and Fring, A. (2002). Unstable particles versus resonances in impurity systems, conductance in quantum wires. Journal of Physics: Condensed Matter, 14, pp. L721–L721. doi:10.1088/0953-8984/14/47/101.
  74. Castro Alvaredo, O. and Fring, A. (2002). Scaling functions from q-deformed Virasoro characters. J. Phys., A35, p. 609. doi:10.1088/0305-4470/35/3/310.
  75. Castro Alvaredo, O. and Fring, A. (2001). Constructing infinite particle spectra. Phys. Rev., D64 . doi:10.1103/PhysRevD.64.085005.
  76. Castro-Alvaredo, O.A. and Fring, A. (2001). Form factors from free fermionic Fock fields, the Federbush model. Nuclear Physics B, 618(3), pp. 437–464.
  77. Castro Alvaredo, O. and Fring, A. (2001). Decoupling the SU(N)2-homogeneous sine-Gordon model. Phys. Rev., D64 . doi:10.1103/PhysRevD.64.085007.
  78. Castro Alvaredo, O. and Fring, A. (2001). Renormalization group flow with unstable particles. Phys. Rev., D63 .
  79. Castro Alvaredo, O. and Fring, A. (2001). Identifying the operator content, the Homogeneous sine-Gordon models. Nucl. Phys., B604, p. 367.
  80. Castro-Alvaredo, O.A., Fring, A., Korff, C. and Miramontes, J.L. (2000). Thermodynamic Bethe ansatz of the homogeneous sine-Gordon models. Nuclear Physics B, 575(3), pp. 535–560.
  81. Bytsko, A.G. and Fring, A. (2000). Factorized combinations of Virasoro characters. Communications in Mathematical Physics, 209(1), pp. 179–205.
  82. Fring, A. and Korff, C. (2000). Colour valued scattering matrices. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 477(1-3), pp. 380–386. doi:10.1016/S0370-2693(00)00226-4.
  83. Fring, A. and Korff, C. (2000). Large and small density approximations to the thermodynamic Bethe ansatz. Nuclear Physics B, 579(3), pp. 617–631. doi:10.1016/S0550-3213(00)00250-9.
  84. Fring, A., Korff, C. and Schulz, B.J. (2000). On the universal representation of the scattering matrix of affine toda field theory. Nuclear Physics B, 567(3), pp. 409–453.
  85. Figueira De Morisson Faria, C., Fring, A. and Schrader, R. (2000). Existence criteria for stabilization from the scaling behaviour of ionization probabilities. Journal of Physics B: Atomic, Molecular and Optical Physics, 33(8), pp. 1675–1685.
  86. Castro Alvaredo, O., Fring, A. and Korff, C. (2000). Form factors of the homogeneous sine-Gordon models. Phys. Lett., B484, p. 167.
  87. Faria, C.F.D.M., Fring, A. and Schrader, R. (1999). Stabilization not for certain and the usefulness of bounds. Proc. 8-th Int. Conf. on Multiphothon Processes, ed. L.F. DiMauro et.al. (1999) 150 .
  88. Babujian, H., Fring, A., Karowski, M. and Zapletal, A. (1999). Exact form factors in integrable quantum field theories: The sine-Gordon model. Nuclear Physics B, 538(3), pp. 535–586. doi:10.1016/S0550-3213(98)00737-8.
  89. Fring, A., Korff, C. and Schulz, B.J. (1999). The ultraviolet behaviour of integrable quantum field theories, affine Toda field theory. Nuclear Physics B, 549(3), pp. 579–612.
  90. Figueira De Morisson Faria, C., Fring, A. and Schrader, R. (1999). Analytical treatment of stabilization. Laser Physics, 9(1), pp. 379–387.
  91. Bytsko, A.G. and Fring, A. (1999). ADE spectra in conformal field theory. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 454(1-2), pp. 59–69.
  92. Bytsko, A.G. and Fring, A. (1998). A Note on ADE-Spectra in Conformal Field Theory. Phys.Lett. B454 (1999) 59-69 . doi:10.1016/S0370-2693(99)00300-7.

    [publisher’s website]

  93. Bytsko, A.G. and Fring, A. (1998). Thermodynamic Bethe Ansatz with Haldane Statistics. Nucl.Phys. B532 (1998) 588-608 . doi:10.1016/S0550-3213(98)00531-8.

    [publisher’s website]

  94. Bytsko, A.G. and Fring, A. (1998). Anyonic interpretation of Virasoro characters and the thermodynamic Bethe ansatz. Nuclear Physics B, 521(3), pp. 573–591. doi:10.1016/S0550-3213(98)00222-3.
  95. Figueira De Morisson Faria, C., Fring, A. and Schrader, R. (1998). On the influence of pulse shapes on ionization probability. Journal of Physics B: Atomic, Molecular and Optical Physics, 31(3), pp. 449–464.
  96. Belavin, A.A. and Fring, A. (1997). On the fermionic quasi-particle interpretation in minimal models of conformal field theory. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 409(1-4), pp. 199–205. doi:10.1016/S0370-2693(97)00879-4.
  97. Fring, A., Kostrykin, V. and Schrader, R. (1997). Ionization probabilities through ultra-intense fields in the extreme limit. Journal of Physics A: Mathematical and General, 30(24), pp. 8599–8610.
  98. Fring, A. (1996). Braid relations in affine Toda field theory. International Journal of Modern Physics A, 11(7), pp. 1337–1352.
  99. Fring, A., Kostrykin, V. and Schrader, R. (1996). On the absence of bound-state stabilization through short ultra-intense fields. Journal of Physics B: Atomic, Molecular and Optical Physics, 29(23), pp. 5651–5671.
  100. Fring, A. and Koberle, R. (1994). Boundary Bound States in Affine Toda Field Theory. Int.J.Mod.Phys. A10 (1995) 739-752 .
  101. Fring, A. and Köberle, R. (1994). Factorized scattering in the presence of reflecting boundaries. Nuclear Physics B, 421(1), pp. 159–172.
  102. Fring, A. and Köberle, R. (1994). Affine Toda field theory in the presence of reflecting boundaries. Nuclear Physics B, 419(3), pp. 647–662.
  103. Fring, A., Johnson, P.R., Kneipp, M.A.C. and Olive, D.I. (1994). Vertex operators and soliton time delays in affine Toda field theory. Nuclear Physics B, 430(3), pp. 597–614.
  104. Fring, A. (1993). Form Factors in Affine Toda Field Theories. .
  105. Fring, A., Mussardo, G. and Simonetti, P. (1993). Form factors for integrable lagrangian field theories, the sinh-Gordon model. Nuclear Physics, Section B, 393(1-2), pp. 413–441. doi:10.1016/0550-3213(93)90252-K.
  106. Fring, A., Mussardo, G. and Simonetti, P. (1993). Form factors of the elementary field in the Bullough-Dodd model. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 307(1-2), pp. 83–90.
  107. Fring, A. and Olive, D.I. (1992). The fusing rule and the scattering matrix of affine Toda theory. Nuclear Physics B, 379(1-2), pp. 429–447.
  108. Fring, A., Liao, H.C. and Olive, D.I. (1991). The mass spectrum and coupling in affine Toda theories. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 266(1-2), pp. 82–86.
  109. Fring, A. A note on the integrability of non-Hermitian extensions of
    Calogero-Moser-Sutherland models.
    Mod.Phys.Lett.A, 21, pp. 691–699. doi:10.1142/S0217732306019682.

    [publisher’s website]

  110. Fring, A. Couplings in Affine Toda Field Theories. .
  111. Assis, P.E.G. and Fring, A. Metrics and isospectral partners for the most generic cubic PT-symmetric
    non-Hermitian Hamiltonian.
    Journal of Physics A: Math. Theor., 41, p. 244001. doi:10.1088/1751-8113/41/24/244001.

    [publisher’s website]

  112. Fring, A. Thermodynamic Bethe ansatz and form factors for the homogeneous
    sine-Gordon models.
    Nato Science Series, 35, p. 139.

Education

Teaching at City University London

- Dynamical Systems [MA3608]
- Mathematical Methods [MA3605]
- Mathematics [AS1051]
- Integrable Systems [MAM611]
- Geometry & Vectors [MA1607] (05-09)
- Programming Excel/VBA [MA1603] (04-05)
- Advanced Certificate in Mathematics and Statistics (04-06)

Other Activities

Editorial Activities (2)

  1. Advisory board of Journal of Physics A.
  2. Editorial board ISRN Mathematical Physics.

Keynote Lecture/Speech

  1. Pseudo-Hermitian Hamiltonians in Quantum Physics XII. Koc University, Istanbul (Turkey) (2013). International conference: Pseudo-Hermitian Hamiltonians in Quantum Physics XII
    pdf slides

Media Appearances (3)

  1. Video for Faculti Media TV. Hermitian versus Non-Hermitian representations for minimal length uncertainty relations
    Faculti Media video
  2. Interview in The Guardian. Must all post doc research have impact?
    Article in the Guardian
  3. City Review 2011. City review 2011, academic excellence

Find us

City, University of London

Northampton Square

London EC1V 0HB

United Kingdom

Back to top

City, University of London is an independent member institution of the University of London. Established by Royal Charter in 1836, the University of London consists of 18 independent member institutions with outstanding global reputations and several prestigious central academic bodies and activities.