
City hosts second National Symposium on Developing Socially Responsible STEM Professionals
The virtual event brought together participants across academia, industry and the NGO sector to discuss the role of ethics in science, technology, eng...
Creating compression and expansion technologies, from idea to the customer.
The Centre for Compressor Technology offers world leading research and development of twin screw machines and compression and expansion technologies. The Centre is the hub for scientists, engineers and industrial experts to work together to solve some of the biggest challenges facing the compressor industry in energy utilisation.
To extend the boundaries of understanding of machines for compression and expansion processes, thereby:
Funded mainly by industrial contracts, but with some input from public funding, members of the centre have developed software for improved analytical modelling of both compression and expansion processes, the use of computational fluid dynamics for more detailed studies, including solid-fluid interaction and noise reduction and test facilities for both air and refrigerant compressors and detailed internal flow measurements.
By this means, apart from its ongoing research activities, the centre is able to investigate and solve industrial problems, offer courses in machine design both to registered students and industrial engineers, license proprietary software and, if required, carry out the complete design, build and testing of prototype machines for industry.
Additionally, the centre organises and hosts a biennial International Conference on Compressors and their Systems, which is sponsored by the Institution of Mechanical Engineers (IMechE), the Institute of Refrigeration (IOR) and leading industrial manufacturers. This has been functioning since 1999 and is a leading forum for academic, research and industrial organisations concerned with the development of fluid machinery.
Centre members have been granted 12 patents, published three monographs, 85 journal papers, 166 conference publications and over 200 industrial reports, for which they have received 13 professional awards and prizes.
Following three years of collaborative work between Professor Ian Smith, who was attempting to develop screw expanders, for recovery of power from low grade heat, at City, University of London, and Professor Nikola Stosic of the University of Sarajevo, who had significant experience in the development of similar machines as compressors, the centre was established in 1995, when Nikola Stosic was awarded a Royal Academy Professorship, with industrial co-sponsorship by Holroyd, of Milnrow, Lancs.
Professor Ahmed Kovacevic, who had been working on screw compressors since 1986, joined them in 1996 and pioneered the application of Computational Fluid Dynamics to evaluate the screw machine performance.
Latterly, they were joined by Dr Elvedin Mujic, who made a significant contribution to noise reduction and who now holds a senior position in industry, and subsequently by Dr Ashvin Dhunput, who also now holds a senior industrial position. More recently, they have been joined by Dr Matthew Read. Dr Read is now a lecturer in the School of Mathematics, Computer Science and Engineering. He makes a significant contribution to integrating expanders into power recovery.
Professor Ian Smith
Read the case study: How can tools such as SCORG and CFD modelling create more efficient and innovative compressors and reduce our carbon footprint?
Important contributions have been made in various aspects of application of compression and expansion technologies and educations such as:
Principal investigator. | Co-investigators | Project title | Funder | Amount awarded to City (excluding partners) | Start date | End date (including no-cost extension) |
---|---|---|---|---|---|---|
Professor Ahmed Kovacevic | Dr Sham Rane | Howden Chair in Engineering Design and Compressor Technology | Howden | £100,000 per annum | 1 January 2008 | ongoing |
Professor Ian Smith | Professor Nikola Stosic | Optimisation of low grade heat recovery systems with screw expanders | Helix Power | £50,000 per annum | 1 January 2012 | ongoing |
Dr Gursharanjit Singh | Professor Ahmed Kovacevic | Improvement in the robustness and fidelity of the CFD methodologies for positive displacement machines | City, University of London Pump-Priming Fund | £6052 | Feb-2019 | Jan-2020 |
Professor Ahmed Kovacevic | Dr Nusa Fain | Integration of Marketing and R&D in New Product Development | Howden Compressors Ltd | £170,799 | 1 January 2011 | 31 December 2012 |
Professor Ahmed Kovacevic | Dr Nusa Fain | Brief Encounters Network: Exploring New Forms of Online Collaborative Design | Engineering and Physical Sciences Research Council | £3,559 | 1 March 2012 | 1 July 2012 |
Professor Ahmed Kovacevic | Dr Sham Rane | NARIP: Networked Activities for Realisation of Innovative Products | Erasmus and Strategic partnerships | €87,420 | 1 October 2014 | 30 September 2017 |
Professor Ahmed Kovacevic | Professor Nikola Stosic | Grid generation for variable screw rotor geometry - Funds for PhD research for Sham Rane | Maya Engineering Works, India and City, University of London | £15,000 (Maya) £30,000 (City) | 1 September 2011 | 30 September 2014 |
Professor Nikola Stosic | Professor Ahmed Kovacevic | Dynamic behaviour of compressor system in unsteady operation - Funds for PhD research for Ekaterina Chukanova | Greenleaves International LLC, Oregon, USA and City, University of London | £15,000 (Greenleaves) £30,000 (City) | 1 September 2011 | 30 September 2014 |
Professor Ahmed Kovacevic | Professor Manolis Gavaises | Multiphase flow in the suction of screw compressors | Compressors Centre, Cavitation Centre, Overheads AK | £78,000 | 1 January 2012 | 31 December 2015 |
Professor Ahmed Kovacevic | Professor Nikola Stosic | Thermal management of clearances in screw compressors | Howden | £5,000 fees £28,000 through various projects | 10 April 2010 | 30 September 2015 |
Professor Nikola Stosic | Professor Jamshid Nouri | Experimental investigation of flow in screw compressors by LDV | EPSRC | £220,000 | 1 May 2005 | 31 May 2005 |
Professor Ahmed Kovacevic | Multiphase pumping systems | DASS Motors, Canada | £55,000 | 1 May 2007 | 1 May 2008 |
Professor Ahmed Kovacevic
The City “N” profile has been developed as a result of 30 years' research and development in screw compressor technology and world patents are held on it. It confers the following advantages over other profiles:
"N" rotor profile diagram. View full-size image.
Two-phase process lubricated screw expander on test rig. View full-size image.
Expanders have a variety of applications but for positive displacement machines, their biggest potential is for two-phase processes where they may be used to replace throttle valves and for large scale power recovery from low grade heat sources.
The centre holds vital patents on the use of any type of positive displacement machine for this purpose and has developed low cost, process lubricated twin-screw expanders with adiabatic efficiencies greater than 75%; the highest value ever attained in a two-phase expansion process.
Given the required performance data, the centre offers full design services either for a complete compressor or expander, or for rotor and porting only, given the details of the machine. The output is then delivered to the customer in the form of drawings, which are also accessible electronically from a secure site.
The centre is also able to arrange prototype manufacture and has test facilities complying with full international standards for the testing of air and refrigeration compressors.
The centre has developed an extensive range of software to aid the design of compressors, which is continually being upgraded. The main package is known as SCORPATH (Screw Compressor Optimum Rotor Profile and THermodynamics). Starting from the specified compressor duty and the minimum number of assumptions, this program determines the optimum machine geometry and rotor profile to obtain the desired results. The output includes full details of the rotors and their porting which can be imported directly into a CAD system, together with performance predictions, bearing loads and suggested choice and details of the tool profile required to manufacture the rotors. User licences are available for this package.
Screenshot from the SCORPATH software. View full-size image.
Computational Fluid Dynamics (CFD) is widely used today as an aid for optimising the design of fluid machinery. However, due to the complexity of the geometry and other associated problems, this analytical tool was not used for screw compressors.
The centre has developed SCORG (Screw Compressor Rotor Geometry), a grid generator, together with associated supporting functions, which enables screw compressor flow and performance to be estimated when attached to commercial CFD and CCM (Computational Continuum Mechanics) solvers. In the latter case, solid-fluid interactions can be estimated so that component distortion and its effect on compressor or expander performance can be estimated.
As in the case of SCORPATH, user licences are available for this software package.
Screenshot from the SCORG software. View full-size image.
Reference list of major industrial users of the centre's research, advisory and design services:
Company | City / State | Country |
---|---|---|
AC Compressors | Appleton | United States of America (USA) |
Aerzener | Aerzen | Germany |
Agroholodmash | Izhevsk | Russia |
Airplus | Inchoon | Korea |
Arsenal | St Petersbury | Russia |
Atmos | Charst | Czech Republic |
Avtovaz | Togliatti | Russia |
Azti Tecnalia | Sukarrieta | Spain |
Bitzer | Singelfingen | Germany |
Carrier | Syracuse, New York | USA |
CFX | Berlin | Germany |
CMP Corp | Oklahoma City, Oklahoma | USA |
Comoti | Bucharest | Romania |
Dalian Refrigeration | Dalian | China |
Dass | Edmonton | Canada |
Dresser-Rand | Wakefield | United Kingdom (UK) |
Drum International | Bradford | UK |
Dunham Bush | Havant | UK |
Duynie Holding BV | The Netherlands | |
DV Systems | Barrie, Ontario | Canada |
Eaton Compressors | Clayton, Oklahoma | USA |
Electratherm | Reno | USA |
Elgi | Coimbatore | India |
Elthom | Nicosia | Cyprus |
Fairchild Controls | Frederick, Maryland | USA |
Frascold | Milan | Italy |
Frick-India | New Delhi | India |
Gardner Denver | Quincy, Illinois | USA |
GE Global Research | Munich | Germany |
Geodynamics | Brisbane | Australia |
GHH (IRCO) | Oberhausen | Germany |
Goodrich | Birmingham | UK |
Helix | East Kilbride | UK |
Holroyd | Milnrow | UK |
Howden | Glasgow | UK |
Jaecklin Gebr GmbH | Augsburg | Germany |
JYC | Seoul | South Korea |
Knorr-Bremse | Siren | France |
Komsan | Istanbul | Turkey |
Korea Inst Research | South Korea | |
Magnum Powers | Oregon | USA |
Mahle Powertrain | UK | |
Mainstream Engineering | Rockledge, Florida | USA |
Mayekawa (MYCOM) | Tokyo | Japan |
Measuring Specialities | Hampton | USA |
Ormat Turbines | Yavne | Israel |
Pars | Iran | |
Powertrain Ltd | Shoreham | UK |
QinetiQ | Farnborough | UK |
Refcomp | Milan | Italy |
Rolls Royce | Indianapolis, Indiana | USA |
Rotary Compressor Systems | Switzerland | |
Rotorcomp | Munich | Germany |
Shell | Thornton | UK |
Svenska Rotor Maskiner (SRM) | Stockholm | Sweden |
Tamrotor (GD) | Tampere | Finland |
TDI | Aarhus | Denmark |
Termomeccania | La Spezzia | Italy |
Trane (IRCO) | La Crosse, Wisconsin | USA |
Trudbenik | Doboj | Bosnia and Herzegovina |
Tutthill | Springfield, Montana | USA |
Vmac | Nanaimo | Canada |
VMC Italia | Creazzo | Italy |
Whipple | Sacramento | USA |
Wilksch Airmotive | Buckingham | UK |
Wittig (GD) | Schopfheim | Germany |
Wuxi | Wuxi | China |
Professor Nikola Stosic
We invite high-calibre students with a passion for research to join us and study for a PhD. Potential PhD topics are outlined below. If you are interested in one of these, please contact the named supervisor or Dr Yan Youyou, Senior Tutor for Research in SMCSE. Note that there is no funding attached to these topics: applicants must make separate arrangements to fund their studies.
Full details of the application process are available online. On your application form, please state that you wish to be considered for admission to the Centre for Compressor Technology, Department of Mechanical and Aeronautical Engineering.
Supervisor: Prof Ahmed Kovacevic
Leakage flows play critical role on the performance of rotary positive displacement compressors. Such compressors today are used in refrigeration, air-conditioning, oil and gas, process industries and air compression and consume more than 20% of electrical energy generated in industrialised countries. Even small reduction in leakage flows will make significant savings and reduction of carbon footprint. To develop the high efficient screw compressor, the leakage characteristic needs to be acquired. However, the leakage characteristic is very difficult to obtain due to the complexity of geometry and process.
This PhD study will contribute to better understanding of the leakage characteristics of screw compressor by means of numerical and experimental methods. It will utilise existing compressor test rig and the numerical methods previously developed in the Centre.
Supervisor: Prof Ahmed Kovacevic, Dr Qiang Zhang
Unsteady Thermo-Fluid-Solid Interaction is a common fundamental physical phenomenon in leakage flows among various rotary machines. The effect of unsteadiness and conjugation have not been extensively studied previous and potentially this could lead to inaccurate or misleading engineering design strategies. In the open literature, there is a lack of consensus in fundamental understanding of the unsteady CHT analysis methods. Multi-physics modelling tools are currently available, but still in development stage. The remaining challenges being faced include the disparity in the time scales, computational efficiency, reliability of turbulence models, etc. In most cases, there are little experimental data to validate the accuracy of modelling methodology. This research will provide a series of benchmark experimental data using LDV and PIV techniques in optical Roots blower. These data will be used to understand the fundamental physics of heat transfer in leakage flows and support further development of the multi-physics modelling and multi-disciplinary design strategy for improved energy efficiency.
Supervisor: Prof Ahmed Kovacevic, Dr Sham Rane
Single and multiphase screw pumps usually have very large helix angles which makes it very difficult to use Computational fluid dynamics for estimation of their performance. The numerical procedures explained in literature are based on generation of the numerical mesh in a cross sectional area which follows the rotor helix and gives a good conformal mesh. However, if the rotor helix is large, the cell skewness becomes prohibitively large which introduces error in numerical simulation. This research is focused on method to develop numerical grid generation for screw machines with large helix angles to enable reliable and fast solution using generic CFD solvers. The developed methods should be validated by experimental results. The project will allow development of methodologies for evaluation of system dynamic performance, and the system nonlinear fluid-structure coupling.
Supervisor: Prof Ahmed Kovacevic, Dr Sham Rane
Despite grid generation for twin screw machines has reached maturity, analysis of screw machines with non-parallel axes such as single screw or for internally geared screw machines, still poses great obstacle for numerical analysis of such machines. This research will be focused on methods for numerical grid generation of screw machines with non-parallel axes and internal gearing. The developed methods should be validated by experimental results. The project will allow development of methodologies for evaluation of system dynamic performance, and the system nonlinear fluid-structure coupling.
Supervisor: Prof Ahmed Kovacevic, Dr Sham Rane
Twin screw machines are today widely used as compressors, expanders, pumps or motors in different industrial applications which either require or permit coexistence of gas and liquid in the system. These are known to be very reliable for handling clean fluids with relatively small content of liquid. To improve designs of such machine for multiphase flows of solids, fluids and gases it is necessary to fully understand flows in the inlet and internal passages. This research study will focus on experimental investigation of the suction and internal flows of such compressors by use of Laser Doppler Velocimetry in order to fully understand suction and internal multiphase flows. The study will help to develop experimental methods suitable for such investigation and will provide computational suite which will allow automated integration of measured results with the results of performance prediction obtained by numerical means which will further allow optimisation of machines for multiphase fluid handling.
Supervisor: Dr Matthew Read
Cylindrical helical gearing profiles can allow an externally lobed inner gear to rotate inside an internally lobed outer gear while maintaining continuous lines of contact between the gears. The continuous contact between the ‘inner’ and ‘outer’ rotors (analogous to the ‘main’ and ‘gate’ rotors in a conventional screw machine) creates a series of separate working chambers. Ported end plates can be used to control the period during which fluid is allowed to enter or leave the working chambers of the internally geared screw machine. This novel configuration can be used as either a compressor or expander and has many potential advantages compared to conventional screw machines including smaller leakage paths, lower sliding velocities and more uniform thermal expansion. Research in this area can focus on a wide range of topics including:
Supervisor: Dr Matthew Read
Recent estimates suggest that the amount of heat rejected in industrial processes is greater than all renewable resources combined. The use of organic fluids in Rankine cycles has potential advantages for maximising the power generated in waste heat recovery applications. The cost of these systems is however high due to the low conversion efficiencies possible from such sources (typically only 10% or less). Recently, interest in power recovery from such heat sources has increased, particularly for smaller units where the number of potential heat sources is greatest. The use of Rankine Cycles with organic working fluids (hydrocarbons or refrigerants) instead of steam is well established for low temperature power generation, and the expansion of liquid or 2-phase fluid (rather that superheated vapour) has been shown to improve performance. Depending on the application, waste heat recovery can be achieved using single cycles, or as cascaded systems where the heat from the source is used to heat fluid in a high temperature cycle, the condenser of which provides a heat input to a low temperature cycle which uses a different fluid. This project will investigate the effect that the choice of single or cascaded cycles has on the performance and the specification of components in the system for particular applications. A range of expander, pump and heat exchanger technologies will be considered in order to identify suitable system configurations to enable greater uptake of this technology.
Supervisor: Dr Sumsun Naher
The Semiconductor Industry Association roadmap proposes that growing one dimensional (1D) metal oxide nanostructures in specific sites greatly helps the in-situ fabrication of electronic circuits, semiconducting nanostructures for gas sensing applications. Existing techniques have had limited success. We propose developing a new state of art novel oxidation system for growing site-specific 1D metal oxides on metal substrates. It will consist of design and commissioning of a state-of-the-art facility with controlled gas system to investigate the effects of different and material parameters and characterisation of as grown nanostructures through the newly developed instrument.
Dr Matthew Read
Research & Support Staff | PhD Researchers | Visiting academics |
---|---|---|
|
|
|
Academic collaborators | Industrial collaborators |
---|---|
|
|
The screw compressor laboratory has three test rigs:
with variable frequency motor of 75kW, maximum air flow of 15 m3/min and maximum pressure up to 14 bar. The test rig meets CAGI and PNEUROP test standards where the testing procedures are carried out according to ISO 1706. The rig is certified by Lloyd’s register.
for screw compressors up to 4 bar discharge pressure and discharge temperatures up to 225 deg C. The test rig allows classic performance testing and LDV testing of flows in the suction of oil free compressors.
Our new screw compressor test cell
This is used for study of leakage flows in narrow gaps in rotating machinery using LDV, PIV and high speed camera.
The expander test facility is a modified vapour-compression system with partial cooling/condensation using modern refrigerants. This test facility can replicate typical operating conditions within an ORC system, and will be used to conduct experiments on two-phase expansion using twin-screw expanders.