- Guizzo, E., Weyde, T., Scardapane, S. and Comminiello, D. (2023). Learning Speech Emotion Representations in the Quaternion Domain. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 31, pp. 1200–1212. doi:10.1109/taslp.2023.3250840.
- Addepalli, S., Weyde, T., Namoano, B., Oyedeji, O.A., Wang, T., Erkoyuncu, J.A. … Roy, R. (2023). Automation of knowledge extraction for degradation analysis. CIRP Annals, 72(1), pp. 33–36. doi:10.1016/j.cirp.2023.03.013.
- Proutskova, P., Wolff, D., Fazekas, G., Frieler, K., Höger, F., Velichkina, O. … Dixon, S. (2022). The Jazz Ontology: A semantic model and large-scale RDF repositories for jazz. Journal of Web Semantics, 74, pp. 100735–100735. doi:10.1016/j.websem.2022.100735.
- Guizzo, E., Weyde, T. and Tarroni, G. (2021). Anti-transfer learning for task invariance in convolutional neural networks for speech processing. Neural Networks, 142, pp. 238–251. doi:10.1016/j.neunet.2021.05.012.
- Confalonieri, R., Weyde, T., Besold, T.R. and Moscoso del Prado Martín, F. (2021). Using ontologies to enhance human understandability of global post-hoc explanations of black-box models. Artificial Intelligence, 296, pp. 103471–103471. doi:10.1016/j.artint.2021.103471.
- Tran, S.N., Garcez, A.D., Weyde, T., Yin, J., Zhang, Q. and Karunanithi, M. (2020). Sequence Classification Restricted Boltzmann Machines With Gated Units. IEEE Transactions on Neural Networks and Learning Systems, 31(11), pp. 4806–4815. doi:10.1109/tnnls.2019.2958103.
- Weyde, T. and Kopparti, R.M. (2019). Modelling identity rules with neural networks. Journal of Applied Logics, 6(4), pp. 745–769.
- Weyde, T. and Kopparti, R.M. (2019). MODELLING IDENTITY RULES WITH NEURAL NETWORKS. JOURNAL OF APPLIED LOGICS-IFCOLOG JOURNAL OF LOGICS AND THEIR APPLICATIONS, 6(4), pp. 745–769.
- Velarde, G., Cancino Chacón, C., Meredith, D., Weyde, T. and Grachten, M. (2018). Convolution-based classification of audio and symbolic representations of music. Journal of New Music Research, 47(3), pp. 191–205. doi:10.1080/09298215.2018.1458885.
- Mahdi, A., Weyde, T. and Al-Jumeily, D. (2018). The FL-SMIA Network: A Novel Architecture for Time Series Prediction. 2017 10TH INTERNATIONAL CONFERENCE ON DEVELOPMENTS IN ESYSTEMS ENGINEERING (DESE 2017) pp. 31–36. doi:10.1109/DeSE.2017.42.
- Abdallah, S., Benetos, E., Gold, N., Hargreaves, S., Weyde, T. and Wolff, D. (2017). The Digital Music Lab. Journal on Computing and Cultural Heritage, 10(1), pp. 1–21. doi:10.1145/2983918.
- Elmsley, A., Weyde, T. and Armstrong, N. (2017). Generating Time: Rhythmic Perception, Prediction and Production with Recurrent Neural Networks. Journal of Creative Music Systems, 1(2). doi:10.5920/JCMS.2017.04.
- Cherla, S., Tran, S.N., d’Avila Garcez, A. and Weyde, T. (2017). Generalising the Discriminative Restricted Boltzmann Machines. pp. 111–119. doi:10.1007/978-3-319-68612-7_13.
- Tran, S.N., Cherla, S., Garcez, A.S.D. and Weyde, T. (2017). The Recurrent Temporal Discriminative Restricted Boltzmann Machines. CoRR, abs/1710.02245.
- de Valk, R. and Weyde, T. (2015). Bringing ‘Musicque into the tableture’: machine-learning models for polyphonic transcription of 16th-century lute tablature. Early Music, 43(4), pp. 563–576. doi:10.1093/em/cau102.
- Tidhar, D., Dixon, S., Benetos, E. and Weyde, T. (2014). The temperament police. Early Music, 42(4), pp. 579–590. doi:10.1093/em/cau101.
- Wolff, D. and Weyde, T. (2014). Learning music similarity from relative user ratings. Information Retrieval, 17(2), pp. 109–136. doi:10.1007/s10791-013-9229-0.
- Velarde, G., Weyde, T. and Meredith, D. (2013). An approach to melodic segmentation and classification based on filtering with the Haar wavelet. Journal of New Music Research, 42(4), pp. 325–345. doi:10.1080/09298215.2013.841713.
- Weyde, T., Slabaugh, G., Fontaine, G. and Bederna, C. (2013). Predicting aquaplaning performance from tyre profile images with machine learning. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 7950 LNCS, pp. 133–142. doi:10.1007/978-3-642-39094-4_16.
- Wissmann, J., Weyde, T. and Conklin, D. (2010). Chord sequence patterns in OWL. Proceedings of the 7th Sound and Music Computing Conference, SMC 2010 p. 16.
- Weyde, T.E. (2004). Modelling Rhythmic Motif Structure with Fuzzy-Logic and Machine Learning. Computing in Musicology, 13, pp. 35–50.
- Weyde, T.E. and Dalinghaus, K. (2004). A Neuro-Fuzzy System for Sequence Alignment on Two
Levels. Mathware and Soft ComputingDalinghaus, 9(2-3), pp. 197–210. - Weyde, T. and Dalinghaus, K. (2003). Design and optimization of neuro-fuzzy-based recognition of musical rhythm patterns. International Journal of Smart Engineering System Design, 5(2), pp. 67–79. doi:10.1080/10255810305041.
- Weyde, T.E. and Enders, B. (1996). Automatische Rhythmuserkennung und -vergleich mit Hilfe von Fuzzy-Logik (Automatic Rhythm Recognition and Comparison Using Fuzzy Logic). Systematische Musikwissenschaft / Systematic Musicology, 4(1-2), pp. 101–113.
Contact details
Address
Northampton Square
London EC1V 0HB
United Kingdom
About
Overview
I am a Reader in the Department of Computer Science, head of the Machine Intelligence and Media Informatics Research Group and a member of the Machine Learning Group, and Senior Tutor for Research.
I work on machine learning and signal processing methods for data analysis with applications in finance, audio, NLP, music, health, security and education. My latest research focuses on creating inductive biases in neural networks for rule-learning, extrapolation, generalisation, and interpretability.
Before I joined City I was a researcher and coordinator of the MUSITECH project at the Research Department of Music and Media Technology at the University of Osnabrück. I hold degrees in Computer Science, Music, and Mathematics and obtained my PhD in Music Technology on the topic of on combining knowledge and machine learning with neuro-fuzzy methods in the automatic analysis of rhythms.
I am an associated member of the Institute of Cognitive Science and the Research Department of Music and Media Technology of the University of Osnabrück, as well as the Intelligent Systems Research Laboratory at the University of Reading.
I am co-author of the educational software Computer Courses in
Music Ear Training Published by Schott Music, which received the Comenius Medal for
Exemplary Educational Media in 2000 and co-editor of the Osnabrück Series on Music and Computation.
I was a consultant to the
NEUMES project at Harvard University
and I am a member of the
MPEG Ad-Hoc-Group on
Symbolic Music Representation (SMR), working on the integration of SMR into MPEG-4. I was the
principal investigator at City in the music e-learning project
i-Maestro which was supported by the
European Commission (FP6).
I have received funding from the AHRC for the Digital Transformations Project
Digital Music Lab - Analysing Big Music Data (DML),
a joint project with the British Library, Queen Mary University of London,
University College London, and I Like Music.
More recently we started the AHRC Amplification Project on
An Integrated Audio-Symbolic Model of Music Similarity
where we apply the results from the DML. I was also engaged as a co-investigator
in a project funded by Innovate UK (formerly Technology Strategy Board) and EPSRC
on
Advancing Consumer Protection Through Machine Learning: Reducing Harm in Gambling
and the Innovate UK project Raven led by Tom Chen.
Qualifications
- PhD Systematic Musicology (Music Technology), University of Osnabrück, Germany, 2002
- Staatsexamen (MSc) Computer Science, University of Osnabrück, Germany, 1999
- Staatsexamen (MSc) Mathematics, Music, Philosophy & Pedagogy, University of Osnabrück, Germany, 1994
Employment
- Reader, City, University of London, 2021 – present
- Senior Lecturer, City, University of London, 2009 – 2021
- Lecturer, City, University of London, 2005 – 2009
- Researcher, University of Osnabrück, 2001 – 2005
- Visiting Lecturer in Mathematics, University of Applied Sciences at the University of Osnabrück, 2000
- Assistant Researcher, University of Osnabrück, 1997 – 2001
- Assistant Researcher & Lecturer, University of Osnabrück, 1994 – 1997
Memberships of professional organisations
- Member, IEEE, Jul 2013 – present
- Professional Member, British Computer Society (BCS), Jun 2012 – present
- Member, Society of Interdisciplinary Musicology, 2012 – present
- Member, Gesellschaft für Informatik, Jan 2003 – present
- Member, International Cooperative on Systematic Musicology, 1998 – present
Research students
Nadine el Naggar
Attendance: Oct 2019 – Sep 2023, full-time
Thesis title: Grammar Bias in Neural Network Learning
Role: 1st Supervisor
Eric Guizzo
Attendance: Oct 2018 – Sep 2022, full-time
Thesis title: Emotion Recognition from Audio
Role: 1st Supervisor
Enrico Lopedoto
Attendance: Feb 2018 – Jan 2025, part-time
Thesis title: Controlling Extrapolation Behaviour of Neural Networks
Role: 1st Supervisor
Radha Kopparti
Attendance: Oct 2017 – Sep 2021, part-time
Thesis title: Relation Based Patterns in Neural Networks
Role: 1st Supervisor
Adriana Danilakova
Attendance: Oct 2016 – Sep 2023, part-time
Thesis title: Parsing Legal Texts with Machine Learning
Role: 1st Supervisor
Can Koluman
Attendance: Oct 2016 – present, part-time
Thesis title: Emotion Driven Machine Learning and Decision Making
Role: 1st Supervisor
Adiana Danilakova
Attendance: Sep 2016 – present, part-time
Thesis title: Image Analysis with Machine Learning and Ontological Reasoning
Role: 1st Supervisor
Gissel Velarde
Attendance: Oct 2012 – present, full-time
Thesis title: Convolutional methods for music analysis
Role: External Supervisor
Reinier de Valk
Attendance: Oct 2011 – Sep 2015, full-time
Thesis title: Cognitive Modelling of Polyphonic Structures in Lute Tablature
Role: 1st Supervisor
Further information: Research Area: Computational Musicology, Artificial Intelligence, Date of start 01 Oct 2011.
Daniel Wolff
Attendance: Oct 2010 – Aug 2017, full-time
Thesis title: Culture-aware Music Information Retrieva
Role: 1st Supervisor
Further information: Research Area Information Retrieval: Artificial Intelligence, Date of start 01 Oct 2010.
Jens Wissmann
Attendance: Sep 2005 – Jul 2012, part-time
Thesis title: Chord Sequence patterns in OWL
Role: 1st Supervisor
Further information: Completed 2012.
Andreas Jansson
Thesis title: Learning to recognise harmony in musical audio signals
Further information: Research Area: Artificial Intelligence, Computational Musicology, Signal Processing, Date of start 01 Feb 2012.
Andrew Lambert
Thesis title: Investigating the Biological Root of Musical Creativity with Self-organised Oscillator Synchronisation Models
Further information: Research Area: Artificial Intelligence, Computation Creativity, Date of start 01 Oct 2013.
Srikanth Cherla
Thesis title: Deep neural networks for music analysis & prediction
Further information: Research Area: Artificial Intelligence, Computational Musicology, Date of start 01 Oct 2012.
Publications
Publications by category
Chapters (5)
- Velarde, G., Meredith, D. and Weyde, T. (2016). A wavelet-based approach to pattern discovery in melodies. Computational Music Analysis (pp. 303–333). ISBN 978-3-319-25931-4.
- Weyde, T. and de Valk, R. (2016). Chord- and Note-Based Approaches to Voice Separation. Computational Music Analysis (pp. 137–154). Springer International Publishing. ISBN 978-3-319-25929-1.
- Lambert, A., Weyde, T.E. and Armstrong, N. (2014). Beyond the Beat: Towards Metre, Rhythm and Melody Modelling with Hybrid Oscillator Networks. In Georgaki, A. and Kouroupetroglou, G. (Eds.), Music Technology Meets Philosophy: from Digital Echos to Virtual Ethos (pp. 485–490). International Computer Music Association: San Francisco. ISBN 978-0-9845274-3-4.
- Cherla, S., Weyde, T., d’Avila Garcez, A. and Pearce, M. (2013). A distributed model for multiple-viewpoint melodic prediction. (pp. 15–20). ISBN 978-0-615-90065-0.
- Weyde, T.E. and Müssgens, B. (2003). Untersuchungen zum musikalischen Schrifterwerb (Studies in Musical Literacy). In Enders, B. and Stange-Elbe, J. (Eds.), Global Village, Global Brain, Global Music - KlangArt-Kongress 1999 (pp. 451–462). Osnabrück: epOs Publishing. ISBN 978-3-923486-41-0.
Conference papers and proceedings (101)
- Whitehouse, C., Weyde, T. and Madhyastha, P. (2023). Towards a Unified Model for Generating Answers and Explanations in Visual Question Answering.
- El-Naggar, N., Madhyastha, P. and Weyde, T. (2023). Theoretical Conditions and Empirical Failure of Bracket Counting on Long Sequences with Linear Recurrent Networks.
- Herron, D., Jiménez-Ruiz, E. and Weyde, T. (2023). On the Benefits of OWL-based Knowledge Graphs for Neural-Symbolic Systems.
- Bunks, C., Weyde, T., Slingsby, A. and Wood, J. (2022). Visualization of Tonal Harmony for Jazz Lead Sheets. EuroVis 2022 13-17 June, Rome, Italy. doi:10.2312/evs20221102
- Whitehouse, C., Weyde, T., Madhyastha, P. and Komninos, N. (2022). Evaluation of Fake News Detection with Knowledge-Enhanced Language Models. Proceedings of the Sixteenth International AAAI Conference on Web and Social Media, ICWSM 2022 6-9 June, Atlanta, Georgia, USA.
- El-Naggar, N., Madhyastha, P. and Weyde, T. (2022). Experiments in Learning Dyck-1 Languages with Recurrent Neural Networks.
- Guizzo, E., Weyde, T. and Leveson, J.B. (2020). Multi-Time-Scale Convolution for Emotion Recognition from Speech Audio Signals. ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 4-8 May. doi:10.1109/icassp40776.2020.9053727
- Perez-Lapillo, J., Galkin, O. and Weyde, T. (2020). Improving Singing Voice Separation with the Wave-U-Net Using Minimum Hyperspherical Energy. ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 4-8 May. doi:10.1109/icassp40776.2020.9053424
- Confalonieri, R., Weyde, T., Besold, T.R. and Moscoso Del Prado Martín, F. (2020). Trepan reloaded: A knowledge-driven approach to explaining black-box models. doi:10.3233/FAIA200378
- Lopedoto, E. and Weyde, T. (2020). ReLEx: Regularisation for Linear Extrapolation in Neural Networks with Rectified Linear Units. doi:10.1007/978-3-030-63799-6_13
- Philps, D., Garcez, A.D. and Weyde, T. (2019). Making Good on LSTMs' Unfulfilled Promise. NeurIPS 2019 Workshop on Robust AI in Financial Services: Data, Fairness, Explainability, Trustworthiness, and Privacy 8-14 December, Vancouver.
- Kopparti, R.M. and Weyde, T. (2019). Weight Priors for Learning Identity Relations. KR2ML, NeurIPS (Neural Information Processing Systems) 8-15 December, Vancouver, Canada.
- Mahdi, A., Weyde, T. and Al-Jumeily, D. (2019). Comparing Unsupervised Layers in Neural Networks for Financial Time Series Prediction. 2019 12th International Conference on Developments in eSystems Engineering (DeSE) 7-10 October. doi:10.1109/dese.2019.00034
- Staines, T., Weyde, T. and Galkin, O. (2019). Monaural Speech Separation with Deep Learning Using Phase Modelling and Capsule Networks. 2019 27th European Signal Processing Conference (EUSIPCO) 2-6 September. doi:10.23919/eusipco.2019.8902655
- Jansson, A., Bittner, R.M., Ewert, S. and Weyde, T. (2019). Joint Singing Voice Separation and F0 Estimation with Deep U-Net Architectures. 2019 27th European Signal Processing Conference (EUSIPCO) 2-6 September. doi:10.23919/eusipco.2019.8902550
- Laibacher, T., Weyde, T. and Jalali, S. (2019). M2U-Net: Effective and Efficient Retinal Vessel Segmentation for Real-World Applications. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) 16-17 June. doi:10.1109/cvprw.2019.00020
- Kopparti, R.M. and Weyde, T. (2019). Modeling Interval Relations for Neural Language models. Machine Learning for Music Discovery, 36th International Conference on Machine Learning (ICML) 9-15 June, Long Beach, California, USA.
- Barbieri, F., Guizzo, E., Lucchesi, F., Maffei, G., del Prado Martin, F.M. and Weyde, T. (2019). Towards a Multimodal Time-Based Empathy Prediction System. 2019 14th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2019) 14-18 May. doi:10.1109/fg.2019.8756532
- Koluman, C., Child, C. and Weyde, T. (2019). Modelling Emotion Based Reward Valuation with Computational Reinforcement Learning.
- Confalonieri, R., Besold, T.R., Weyde, T., Creel, K., Lombrozo, T., Mueller, S. … Shafto, P. (2019). What makes a good explanation? Cognitive dimensions of explaining intelligent machines.
- Weyde, T., Philps, D. and d'Avila Garcez, A. (2018). Continual Learning Augmented Investment Decisions. 2018 NeurIPS Workshop on Challenges and Opportunities for AI in Financial Services: the Impact of Fairness, Explainability, Accuracy, and Privacy (FEAP-AI4Fin) 2-8 December, Montreal.
- de Valk, R. and Weyde, T. (2018). Deep neural networks with voice entry estimation heuristics for voice separation in symbolic music representations.
- Jansson, A., Humphrey, E., Montecchio, N., Bittner, R., Kumar, A. and Weyde, T. (2017). Singing voice separation with deep U-Net convolutional networks.
- Kedyte, V., Panteli, M., Weyde, T. and Dixon, S. (2017). Geographical origin prediction of folk music recordings from the United Kingdom.
- Cherla, S., Tran, S.N., Garcez, A.S.D. and Weyde, T. (2017). Generalising the Discriminative Restricted Boltzmann Machines.
- Abdallah, S., Benetos, E., Gold, N., Hargreaves, S., Weyde, T. and Wolff, D. (2016). Digital music lab: A framework for analysing big music data. 2016 24th European Signal Processing Conference (EUSIPCO) 29 Aug 2016 – 2 Sep 2016. doi:10.1109/eusipco.2016.7760422
- Lambert, A.J., Weyde, T. and Armstrong, N. (2016). Adaptive Frequency Neural Networks for Dynamic Pulse and Metre Perception. 17th International Society for Music Information Retrieval Conference, ISMIR 2016 7-11 August, New York City, United States.
- Sarkar, S., Weyde, T., Garcez, A.D.A., Slabaugh, G., Dragicevic, S. and Percy, C. (2016). Accuracy and interpretability trade-offs in machine learning applied to safer gambling.
- Percy, C., D'Avila Garcez, A.S., Dragicevic, S., França, M.V.M., Slabaugh, G. and Weyde, T. (2016). The need for knowledge extraction: Understanding harmful gambling behavior with neural networks. doi:10.3233/978-1-61499-672-9-974
- Colton, S., Llano, M.T., Hepworth, R., Charnley, J., Gale, C.V., Baron, A. … Lloyd, J.R. (2016). The beyond the Fence musical and computer says show documentary.
- Velarde, G., Weyde, T., Chacón, C.C., Meredith, D. and Grachten, M. (2016). Composer recognition based on 2D-filtered piano-rolls.
- Cherla, S., Tran, S.N., Garcez, A.D. and Weyde, T. (2015). Discriminative learning and inference in the Recurrent Temporal RBM for melody modelling. 2015 International Joint Conference on Neural Networks (IJCNN) 12-17 July. doi:10.1109/ijcnn.2015.7280691
- Sigtia, S., Benetos, E., Boulanger-Lewandowski, N., Weyde, T., d'Avila Garcez, A.S. and Dixon, S. (2015). A hybrid recurrent neural network for music transcription. ICASSP 2015 - 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 19-24 April. doi:10.1109/icassp.2015.7178333
- Sigtia, S., Benetos, E., Boulanger-Lewandowski, N., Weyde, T., Garcez, A.S.D. and Dixon, S. (2015). A HYBRID RECURRENT NEURAL NETWORK FOR MUSIC TRANSCRIPTION.
- Wolff, D., MacFarlane, A. and Weyde, T. (2015). Comparative music similarity modelling using transfer learning across user groups.
- Lambert, A.J., Weyde, T. and Armstrong, N. (2015). Perceiving and predicting expressive rhythm with recurrent neural networks.
- Cherla, S., Tran, S.N., Weyde, T. and d’Avila Garcez, A. (2015). Hybrid long- and short-term models of folk melodies.
- Benetos, E. and Weyde, T. (2015). An efficient temporally-constrained probabilistic model for multiple-instrument music transcription.
- Barthet, M., Plumbley, M., Kachkaev, A., Dykes, J., Wolff, D. and Weyde, T. (2014). Big Chord Data Extraction and Mining. Conference on Interdisciplinary Musicology – CIM14 3-6 December, Staatliches Institut für Musikforschung, Berlin, Germany.
- Kachkaev, A., Wolff, D., Barthet, M., Tidhar, D., Plumbley, M., Dykes, J. … Weyde, T. (2014). Visualising Chord Progressions in Music Collections: A Big Data Approach. Conference on Interdisciplinary Musicology – CIM14 3-6 December, Staatliches Institut für Musikforschung, Berlin, Germany.
- Benetos, E., Ewert, S. and Weyde, T. (2014). Automatic transcription of pitched and unpitched sounds from polyphonic music. ICASSP 2014 - 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 4-9 May. doi:10.1109/icassp.2014.6854172
- Benetos, E., Jansson, A. and Weyde, T. (2014). Improving automatic music transcription through key detection. AES 53rd International Conference on Semantic Audio 27-29 January, London, UK.
- Wolff, D., Bellec, G., Friberg, A., MacFarlane, A. and Weyde, T. (2014). Creating audio based experiments as social Web games with the CASimIR framework.
- Crawford, T., Fields, B., Lewis, D., Page, K., De Valk, R. and Weyde, T. (2014). SLICKMEM - Explorations in Linked Data practice for early music.
- Tran, S.N., Wolff, D., Weyde, T. and Garcez, A.D.A. (2014). Feature preprocessing with Restricted Boltzmann Machines for music similarity learning.
- Wolff, D., Tidhar, D., Benetos, E., Dumon, E., Cherla, S. and Weyde, T. (2014). Incremental Dataset Definition for Large Scale Musicological Research. DLfM '14: 1st International Workshop on Digital Libraries for Musicology. doi:10.1145/2660168.2660176
- Weyde, T., Cottrell, S., Dykes, J., Benetos, E., Wolff, D., Tidhar, D. … Tovell, A. (2014). Big Data for Musicology. DLfM '14: 1st International Workshop on Digital Libraries for Musicology. doi:10.1145/2660168.2660187
- Lambert, A., Weyde, T. and Armstrong, N. (2014). Beyond the beat: Towards metre, rhythm and melody modelling with hybrid oscillator networks.
- Lambert, A., Weyde, T. and Armstrong, N. (2014). Studying the effect of metre perception on rhythm and melody modelling with LSTMs.
- Benetos, E., Badeau, R., Weyde, T. and Richard, G. (2014). Template adaptation for improving automatic music transcription.
- Sigtia, S., Benetos, E., Cherla, S., Weyde, T., d’Avila Garcez, A.S. and Dixon, S. (2014). An RNN-based music language model for improving automatic music transcription.
- Cherla, S., Weyde, T. and d’Avila Garcez, A. (2014). Multiple viewpoint melodic prediction with fixed-context neural networks.
- de Valk, R., Weyde, T. and Benetos, E. (2013). A machine learning approach to voice separation in lute tablature. 14th International Society for Music Information Retrieval Conference 4-8 November, Curitiba, PR, Brazil.
- Benetos, E. and Weyde, T. (2013). Explicit duration hidden Markov models for multiple-instrument polyphonic music transcription. 14th International Society for Music Information Retrieval Conference 4-8 November, Curitiba, PR, Brazil.
- Cherla, S., Weyde, T.E., Garcez, A. and Pearce, M. (2013). Learning Distributed Representations for Multiple-Viewpoint Melodic Prediction. 14th International Society for Music Information Retrieval Conference 4-8 November, Curtiba, PR, Brazil.
- Benetos, E., Cherla, S. and Weyde, T. (2013). An efficient shift-invariant model for polyphonic music transcription. 6th International Workshop on Machine Learning and Music Prague, Czech Republic.
- Wolff, D. and Weyde, T. (2012). Adapting similarity on the MagnaTagATune database: effects of model and feature choices.
- Wolff, D., Stober, S., Nürnberger, A. and Weyde, T. (2012). A Systematic Comparison of Music Similarity Adaptation Approaches.
- Weyde, T.E. and Wolff, D. (2011). On Culture-dependent Modelling of Music Similarity. 4th International Conference of Students of Systematic Musicology 5-7 October, Cologne, Germany.
- Weyde, T.E. and Wolff, D. (2011). Adapting Metrics for Music Similarity Using Comparative
Ratings. 12th International Society for Music Information October, Miami, Florida, USA. - Wolff, D. and Weyde, T. (2011). Combining Sources of Description for Approximating Music Similarity Ratings.
- Weyde, T.E., Wissmann, J. and Conklin, D. (2010). Representing chord sequences in OWL. Sound and Music Computing Conference 2010 July, Universidat Pompeu Fabra, Barcelona, Spain.
- Wissmann, J., Weyde, T.E. and Conklin, D. (2010). Representing chord sequences in OWL. Sound and Music Computing Conference 2010 21-24 June, Barcelona, Spain.
- Honingh, A., Weyde, T. and Conklin, D. (2009). Sequential association rules in atonal music. doi:10.1007/978-3-642-02394-1_12
- Weyde, T.E., Ng, K. and Nesi, P. (2008). i-Maestro: Technology-Enhanced Learning for Music. International Computer Music Conference 24-29 August, Belfast.
- Weyde, T.E., Ng, K., Ong, B. and Neubarth, K. (2008). Interactive Multimedia Technology
Enhanced Learning for Music with i-Maestro. World Conference on Education Multimedia, Hypermedia & Telecommunications 30 Jun 2008 – 4 Jul 2008, Vienna, Austria. - Weyde, T.E., Neubarth, K., Gehrs, V., Sutton, L. and Poggio, L. (2008). The European Curriculum Challenge: a Case Study in Technology-Supported Specialised Music Education. Fourth I-MAESTRO Workshop on Technology Enhanced Music Education, co-located with the 8th International Conference new Interfaces for Musical Expression 4 June, Genova.
- Ng, K.-.C., Weyde, T., Larkin, O., Neubarth, K., Koerselman, T. and Ong, B. (2007). 3d augmented mirror: a multimodal interface for string instrument learning and teaching with gesture support.
- Wissmann, J. and Weyde, T. (2007). Using diagrams for the semantic annotation of multimedia. doi:10.1109/AXMEDIS.2007.29
- Weyde, T.E. (2007). Automatic Semantic Annotation of Music with Harmonic Structure. 4th Sound and Music Computing Conference Lefkada, Greece.
- Weyde, T.E. and Wissmann, J. (2007). Experiments on the Role of Pitch Intervals in Melodic Segmentation. International Conference on Music Information Retrieval Vienna, Austria.
- Weyde, T.E., Ng, K., Neubarth, K., Larkin, O., Koerselman, T. and Ong, B. (2007). A Systemic Approach to Music Performance Learning with Multimodal Technology. Support E-Learning Conference Quebec City, Canada.
- Weyde, T.E., Neubarth, K. and Badii, A. (2007). Generation of Exercise Objects for Personalised Technology-Enhanced Music Learning. E-Learn Conference Quebec City, Canada.
- Weyde, T., Wissmann, J. and Neubarth, K. (2007). An Experiment on the Role of Pitch Intervals in Melodic Segmentation.
- Weyde, T.E. (2006). Generation of Exercises and Exercise Sequences for Technology Enhanced. 2nd International Conference on Automated Production of Cross-Media Content for Multichannel Distribution Leeds, UK.
- Weyde, T. and Datzko, C. (2005). Efficient Melody Retrieval with Motif Contour Classes.
- Weyde, T.E. (2005). Dynamic and Interactive Visualisations of MPEG Symbolic Music Representation. 5th Open Musicnetwork Workshop University of Vienna, Austria.
- Weyde, T.E. and Enders, B. (2005). Bestimmung von Gestaltgrenzen und Gestaltähnlichkeiten für Musik-Retrieval (Determining Gestalt Boundaries and Similarities for Music Retrieval). Digital & Multimedia Music Publishing Osnabrück.
- Weyde, T. (2004). The Influence of Pitch on Melodic Segmentation.
- Weyde, T.E. and Wissmann, J. (2004). Dynamic Concept Maps for Music. 1st Concept Mapping Conference 2004 Unversidat Publica de Navarra, Pamplona, Spain.
- Weyde, T.E. (2004). Application Scenarios for Music Notation in MPEG: A Music Rehearsal Companion. 3rd Interactive Musicnetwork Open Workshop.
- Dalinghaus, K. and Weyde, T. (2003). Structure recognition on sequences with a neuro-fuzzy-system.
- Weyde, T.E. (2003). Case Study: Leveraging Representations of Musical Structure for Music
Software. Second Musicnetwork Workshop University of Leeds. - Weyde, T.E. (2003). Optimization of Parameter Weights in Modelling Melodic Segmentation. ESCOM 2003 Conference Hannover, Germany2.
- Gieseking, M. and Weyde, T. (2002). Concepts of the MUSITECH infrastructure for internet-based interactive musical applications. doi:10.1109/WDM.2002.1176191
- Noll, T., Garbers, J., Höthker, K., Spevak, C. and Weyde, T. (2002). Opuscope - Towards a Corpus-Based Music Repository.
- Weyde, T.E. (2002). Integrating Segmentation and Similarity in Melodic Analysis. International Conference on Music Perception and Cognition 2002 Causal, Sydney.
- Weyde, T.E. (2001). Grouping, similarity and the recognition of rhythmic structure. International Computer Music Conference Havana, Cuba.
- Weyde, T.E. (1999). Globale Revolution oder digitale Kontinuität (Global Revolution or Digital Continuity). KlangArt Congress Musik und Bildung.
- Weyde, T.E. and Enders, B. (1999). Das Computerkolleg Musik - Gehörbildung, eine integrierte Lernumgebung für Musikpraxis und -theorie im Hochschuleinsatz. Lernplattformen Hildesheim1.
- Weyde, T.E. Grammatikbasierte harmonische Analyse von Jazzstandards mit Computerunterstützung (Grammar Based Harmonic Analysis of Jazz Standards Aided by Computer). KlangArt Kongress 1995 Universitätsverlag Rasch, Osnabrück.
- Weyde, T.E. Recognition of rhythmic structure with a neuro-fuzzy-system. Sixth International Conference on Music Perception and Cognition Keele University, Staffordshire, UK.
- Weyde, T.E. and Gieseking, M. Computer- und Internetbasiertes Musiklernen (Computer and internet based music learning). KlangArt Congress 1997.
- Weyde, T.E. Knowledge- and Learning-Based Segmentation and Recognition of Rhythm Using Fuzzy-Prolog. 8th Journee d'Informatique Musicale Institut Internationale de Musique Electroacoustique de Bourges.
- Weyde, T.E. and Dalinghaus, K. Recognition of Musical Rhythm Patterns Based on a
Neuro-Fuzzy-System. ANNIE 2001. - Weyde, T.E. and Wissmann, J. Visualization of Musical Structure. First Conference on Interdisciplinary Musicology Graz, Austria.
- Weyde, T.E. MPEG Symbolic Music Representation and Music Education Software. Workshop and Industrial Axmedis Conference 2005 Universita degli Studi di Firenze. Florence, Italy.
- Weyde, T.E. Modelling cognitive and analytic musical structures in the Musitech
framework. 5th Conference on Understanding and Creating Music Seconda Universita degli Studi di Napoli. Caserta, Italy. - Weyde, T.E. and Neubarth, K. Using Music Processing Algorithms for Exercise Generation
in Music E-Learning. 2nd International Conference on Automated Production of Cross-Media Content for Multichannel Distribution. - Weyde, T.E. and Wissmann, J. Semantic Interpretation of Multimedia Annotation Diagrams. 12th International Conference on Human-Computer Interaction Bejing, China.
- Philps, D., Weyde, T., Garcez, A.D. and Batchelor, R. Continual Learning Augmented Investment Decisions.
Journal articles (24)
Report
- Honingh, A. and Weyde, T.E. (2008). Integrating Convexity and Compactness into the ISSM: Melodic Analysis of Music..
Software (2)
- Weyde, T.E. and Enders, B. (2002). Computer Courses in Music - Ear Training (English version
of Computerkolleg Musik - Gehörbildung). Schott Musik International, Mainz. - Weyde, T.E. and Enders, B. (1999). Computerkolleg Musik - Gehörbildung (ear training software
). Schott Musik International, Mainz.
Professional activities
Collaborations (academic) (2)
- of Development of Games With A Purpose for Online Data Collection project (Apr 2013 – present)
Other partners: Anders Friberg, Anders Elowson - of Wavelet-based analysis of symbolic music representations project (Oct 2012 – present)
Other partners: Gissel Velarde, David Meredith
Collaborations (industrial) (2)
- Researcher of MIR Research for the World's First Computer Generated Musical project (Jul 2015 – Sep 2017)
Sponsored by Wingspan Productions Ltd
Other partners: Wingspan Productions for Sky Arts, Queen Mary University of London - of (Mar 2012 – present)
Other partners: Continental AG, Germany
Consultancy (3)
- University of Oxford / Eduserv (2005)
Consultant to the project 'Developing the infrastructure for a distributed e-library of medieval music transcription in standardised format' based at Oxford University & funded by Eduserv - 'NEUMES Digital Encoding of Medieval Chant' at Harvard (2003 – 2004)
Consultant to the Harvard based project 'NEUMES Digital Encoding of Medieval Chant' funded by the Andrew E. Mellon foundation. - Independent consultant on multimedia information & education systems (1998 – 2001)