Visit of Chinese Academics to the Civil Engineering Department, 20 Sep. 2016

Research overview – Structures
Professor A J Kappos
The Structures group

<table>
<thead>
<tr>
<th>Professor Ashraf Ayoub</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Professor Cedric D’Mello</td>
<td></td>
</tr>
<tr>
<td>Professor Andreas Kappos</td>
<td></td>
</tr>
<tr>
<td>Dr Agathoklis Giaralis</td>
<td></td>
</tr>
<tr>
<td>Senior Lecturer</td>
<td></td>
</tr>
<tr>
<td>Dr Brett McKinley</td>
<td></td>
</tr>
<tr>
<td>Senior Lecturer</td>
<td></td>
</tr>
<tr>
<td>Dr Tatyana Micic</td>
<td></td>
</tr>
<tr>
<td>Senior Lecturer</td>
<td></td>
</tr>
<tr>
<td>Dr Feng Fu</td>
<td></td>
</tr>
<tr>
<td>Lecturer</td>
<td></td>
</tr>
<tr>
<td>Dr Panagiotis Mergos</td>
<td></td>
</tr>
<tr>
<td>Lecturer</td>
<td></td>
</tr>
<tr>
<td>Dr Alfredo Camara</td>
<td></td>
</tr>
<tr>
<td>Lecturer</td>
<td></td>
</tr>
</tbody>
</table>
The Heavy Structures Laboratory

- £800K investment in equipment for teaching and research
- Servo-controlled concrete testing including FRC post-peak
- HPC, VHPC & UHPC concrete mixing in large volumes for research with moisture monitoring for repeatable mixing
- High flow computer-controlled hydraulic loading for static, cyclic and dynamic & hybrid testing with ring-main
- Loading frames including strong-wall for lateral loading of tall structures
Key research areas

- Types of structures studied:
 - Buildings
 - Bridges
 - Nuclear structures
 - Offshore structures
 - Including complex/special ones

- Types of ‘special’ loadings studied:
 - Earthquake
 - Blast/explosion
 - Fire

- Types of approaches used:
 - Analytical (finite element modelling)
 - Experimental (laboratory and in situ testing)
 - Empirical (statistical)
Dr Agathoklis Giaralis

- **Structural health monitoring** via wireless sensor networks using compressive sensing data acquisition techniques (EPSRC funded project)

- **Vibration control and energy harvesting** from wind/wave/earthquake excited structures using the novel lightweight tuned mass-damper-inerter (TMDI) device (EPSRC funded project)

- **Seismic analysis and assessment** of ordinary and special structures using beyond-codes-of-practice Monte Carlo-based and Stochastic Dynamics-based techniques (Internally funded project)

- **Wavelet-based stochastic modelling, representation, and simulation** of extreme dynamic loads in earthquake, wind, and wave engineering applications (Internally funded project)
Improving the financial and environmental cost of steel framed buildings

- Product development in composite construction
 - Floor dynamics, strength, stiffness, interface strength
- Industry supported
- Impact
 - Six design guides
 - Two software suites
 - Products account for c.7% of commercial market

Cellular beams, Ultra shallow floor beams (USFB), Bi-Steel/Corefast, Slimflor, Slimdek, Asymmetric beams (ASB)
Static Load Tests

Shake Table Tests

Analysis of Nuclear Structures

Multi-Scale Analysis

Finite element model for the structure

Finite element model for concrete mesostructure
Dr Panagiotis Mergos

- Seismic assessment and retrofit of reinforced concrete structures with sub-standard detailing

- Inelastic lateral response of slender concrete walls in tall buildings

 (Mergos and Beyer 2013)

- Rocking isolation of structures resting on spread foundations

 (Mergos and Kawashima 2005)

- Cumulative damage effects and cyclic testing of structures

 (Mergos and Beyer 2014)
Dr Feng Fu

- Progressive collapse analysis of long span structures and tall buildings under earthquake, explosion and fire

- Full scale testing on structures under extreme loading condition
Analysis of the elastic and inelastic response of R/C structures (buildings, bridges, etc.) using member-by-member models (lumped or distributed plasticity), and members under monotonic and cyclic bending and shear, using member-type, fibre, or finite element models.

Experimental study of reinforced concrete members (beams, walls, slabs) under monotonic and reversed cyclic loading.

Elastic and inelastic analysis of (load-bearing) masonry buildings using equivalent frame or finite element models.

Repair and strengthening of R/C members using conventional methods or FRP’s – Experimental and analytical studies.

Constitutive laws for normal and high-strength confined concrete

Analysis of pounding between adjacent structures (buildings, bridge segments) – Methods based on impact laws and/or dimensional analysis.

Vulnerability to earthquakes of R/C and masonry structures – Analytical, empirical, and hybrid methods.

Cost-benefit and life-cycle cost methods for pre-earthquake strengthening of structures.

Improved seismic design methods include performance-based and deformation-control methods – Design methods involving use of advanced analysis tools.
International impact of our research

Andreas Kappos
City University London, Aristotle University of Thessaloniki
Verified email at city.ac.uk
Cited by 3436
Civil Engineering, Earthquake Structural Engineering, Concrete Structures, Bridges, Seismic Design

"Steve" CS Cai
Louisiana State Univ
Verified email at lsu.edu
Cited by 3236
Bridges, Structures, Wind Engineering

Mehdi Sairidi
Professor of Civil Engineering, University of Nevada, Reno
Verified email at unr.edu
Cited by 2697
Structures, Bridges, Earthquake Engineering, Bridge Innovation, Advanced Materials

Eugene J. O'Brien
Professor of Civil Engineering, University College Dublin
Verified email at ucd.ie
Cited by 2350
Bridges, Dynamics, Loading

Necati Calbes
Professor of Civil Engineering, University of Central Florida & Bogazici University
Verified email at ucf.edu
Cited by 2308
Civil Infrastructure Systems, Bridges, Structural Identification, Structural Monitoring, Modal Analysis
Constitutive modelling of confined concrete

circular hollow sections (CHS):
- Outer diameter 1.50 m
- Type 1 (CHS1): Thickness 30 cm
- Type 2 (CHS2): Thickness 45 cm
- Concrete cover 5 cm

incorporated in ATENA
Application of the **optical integration** method

Modelling of inelastic shear effects

Analysis of Duong et al. (Un. Toronto) frame specimen, using IDARC-AUTh
(b) base shear vs. top displacement prediction by FSB model;
c) base shear vs. top displacement predictions by F and FB models;
d) pushover curves from different finite element models;
e) first storey beam shear force vs. shear strain response inside plastic hinges;
f) first storey beam shear force vs. shear strain response outside plastic hinges.

Testing of FRP/SRP-strengthened members

\[V_{deb} = V_{crit} + 1.40 \cdot V_{R,f} \]

\[V_{rd,f} = 0.9 \cdot d \cdot f_{ld, e,W} \cdot 2 \cdot t_f \cdot \left(\frac{w_f}{s_f} \right)^2 \cdot (\cot \theta + \cot \beta) \cdot \sin \beta \]
The Research Centre for Civil Engineering Structures was established in 2014

- Three key research areas
 - Tall buildings
 - Long-span bridges
 - Nuclear structures

- Research questions
 - How can we design or assess complex engineering structures, like long-span or irregular bridges, for extreme loadings to ensure high performance?
 - Can we achieve “S-cubed” tall buildings using energy harvesting-enabled vibration suppression configurations and autonomous structural health monitoring wireless sensor networks?
 - How can we design nuclear power plants under multi-hazard risks?

http://www.city.ac.uk/department-civil-engineering/research-centre-civil-engineering-structures
Thank you for your kind attention!

Websites:

www.city.ac.uk/engineering-maths/staff/professor-andreas-kappos
ajkap.weebly.com/english.html

email:
Andreas.Kappos.1@city.ac.uk