Department of Economics
Bayesian Endogeneity Bias Modeling

Gabriel Montes-Rojas
City University London

Antonio Galvao
University of Iowa

Department of Economics
Discussion Paper Series
No. 13/09

1 Corresponding author: Department of Economics, City University London, D306 Social Sciences Bldg, 10 Northampton Square, London EC1V 0HB, UK. Email: Gabriel.Montes-Rojas.1@city.ac.uk.
Bayesian Endogeneity Bias Modeling*

GABRIEL MONTES-ROJAS†
ANTONIO F. GALVAO‡

November 7, 2013

Abstract

We propose to model endogeneity bias using prior distributions of moment conditions. The estimator can be obtained both as a method-of-moments estimator and in a Ridge penalized regression framework. We show the estimator’s relation to a Bayesian estimator.

Keywords: Endogeneity; Shrinkage; Ridge regression; Method of moments.

JEL Classification: C11, C52

1 Introduction

A solution to the problem of endogeneity is to rely on exogenous information, i.e. instrumental variables (IV) (see e.g. Hausman, 1983; Angrist and Krueger, 2001) and proxy variables (see e.g. Olley and Pakes, 1996; Levinsohn and Petrin, 2003; Wooldridge, 2002, 2009) derived from additional exclusion restrictions or equations. In practice, the type of restriction and the point identification strategy chosen determine the model to be used. Alternative approaches are given in Rigobon (2003), Klein and Vella (2010), Chalak and White (2011), and Lewbel (2012). However, in many empirical applications there is disagreement and concern about the exclusion restrictions imposed. A related approach is to seek parameter set

*The authors would like to express their appreciation to badi Baltagi, one anonymous referee, Roger Koenker, Stephane Bonhomme, Susumu Imai, and Ehsan Soofi for helpful discussions and comments regarding this paper. All the remaining errors are our solely responsibility.

†Corresponding author: Department of Economics, City University London. Address: D308 Social Sciences Bldg, Northampton Square, London EC1V 0HB, UK. Tel: +44 (0)20 7040 8919. Email: Gabriel.Montes-Rojas.1@city.ac.uk

‡Department of Economics, University of Iowa, W334 Pappajohn Business Building, 21 E. Market Street, Iowa City, IA 52242. E-mail: antonio-galvao@uiowa.edu
identical. The advantage of such methods is that they require weaker assumptions than those needed for consistent point estimation of the parameter of interest.

This paper suggests an alternative strategy to deal with the endogeneity problem. We propose the use of a prior distribution on the endogeneity bias when there is no availability of additional information such as instrumental or proxy variables. By modeling bias, thus, we mean to impose a prior distribution on the amount of endogeneity of the endogenous variables’ coefficient estimators and then compute the distribution of the associated parameters of interest. This distribution reflects the researcher’s beliefs about endogeneity. The value of our contribution does not only lie in the derived estimators but in the way it proposes to think about endogeneity. In particular, it formalizes the use of prior knowledge about unobservables and their relationship with observables to quantitatively assess the degree of bias. The proposed estimators are constructed using the method-of-moments by imposing the prior distribution of a misspecified moment condition, or equivalently, in a Ridge penalized regression framework, by only penalizing the endogenous variables’ coefficients. We show the connection of our estimator with a Bayesian estimator.

The proposed methodology is related to recent developments in the literature. First, it can be interpreted as in Altonji, Elder and Taber (2005a,b, 2008) as a strategy to extract information from observables about the endogeneity bias. They construct an index of observables, which in combination of prior knowledge about the sign of the bias and a condition on the relationship between included (observable) and excluded (non-observable) variables can be used to identify the endogenous variable parameter. In a related work Kiviet (2011) imposes the correlation between the endogenous variable and the innovations. In this case, identification of the true parameters cannot be achieved, but the direction and magnitude of the bias is analyzed instead. Second, the idea of using penalized regression to model endogeneity was proposed by Galvao and Montes-Rojas (2010) in the context of dynamic panel data models where the fixed-effects’ shrinkage reduces the dynamic panel bias.

2 Regression shrinking of endogenous covariates

Consider the following linear regression model,

\[y_i = x_{1i} \beta_1 + x_{2i} \beta_2 + \epsilon_i, \quad i = 1, 2, ..., n, \]

where \(x_{1i} \) is a \(1 \times p_1 \) vector, \(x_{2i} \) is a \(1 \times p_2 \) vector, \(\beta_1 \) is a \(p_1 \times 1 \) vector, and \(\beta_2 \) is a \(p_2 \times 1 \) vector. \(x_1 \) contains \(p_1 \) exogenous regressors and \(x_2 \) contains \(p_2 \) endogenous regressors. Let \(x = (x_1, x_2) \) and \(\beta = (\beta_1, \beta_2)' \). In matrix notation \(y = x_1 \beta_1 + x_2 \beta_2 + \epsilon = x \beta + \epsilon \) where \(y, x, \epsilon \) are the corresponding \(n \)-dimensional vectors or matrices.

We consider the following assumptions:

Assumption 1. \((y_i, x_i) \) is an i.i.d. random sample for \(i = 1, ..., n \) with \(y_i = x_{1i} \beta_1 + x_{2i} \beta_2 + \epsilon_i \).

Assumption 2. \(\frac{1}{n} x_1' x_1 \xrightarrow{p} C_1 \) (finite and non-singular), \(\frac{1}{n} x_1' x_2 \xrightarrow{p} C_{12} \) (finite), \(\frac{1}{n} x_2' M_1 x_2 \xrightarrow{p} V_{21} \) (finite and non-singular), and \(\frac{1}{n} x_1' M_2 x_1 \xrightarrow{p} V_{12} \) (finite and non-singular), where \(M_j = \)
Let $\hat{I}_p - x_j(x_j'x_j)^{-1}x_j' = 0$ and asymptotic calculations show that $\hat{I}_p \rightarrow 0$ and $\frac{1}{n}x_2'\epsilon \rightarrow B_2$.

Assumption 3. For any i, $E[x_i'\epsilon_i] = 0$ and $E[x_2'\epsilon_i] = B_2$, such that $\frac{1}{n}x_i'\epsilon \rightarrow 0$ and $\frac{1}{n}x_2'\epsilon \rightarrow B_2$.

Let $\hat{\beta}_2 = (\hat{\beta}_1, \hat{\beta}_2)'$ be the ordinary least squares (OLS) estimator. Simple OLS algebra and asymptotic calculations show that

$$\hat{\beta}_1^0 \rightarrow \beta_1 - C_1^{-1}C_{12}\delta_2,$$
$$\hat{\beta}_2^0 \rightarrow \beta_2 + \delta_2,$$

where $\delta_2 = V_{21}^{-1}B_2$ is the OLS bias in estimating β_2. The OLS estimator is derived from the set of estimating equations

$$E[x_1'\epsilon] = 0,$$
$$E[x_2'\epsilon] = 0,$$

and thus the OLS bias is the result of misspecifying the second moment condition, i.e. wrongly assuming x_2 is exogenous, where in fact, $E[x_2'\epsilon] = B_2$, for a general unknown B_2. In particular, consider the following modified moment condition $V_{21}^{-1}E[x_2'\epsilon] = V_{21}^{-1}B_2 = \delta_2$ and let $\delta_2 = \Lambda\beta_2$, where Λ is a $p_2 \times p_2$ diagonal matrix $diag\{\lambda_1, \lambda_2, \ldots, \lambda_{p_2}\}$. In many empirical applications the signs of β_2, δ_2 and C_{12} are known, and then the sign of the elements in Λ are also known. Note that $\Lambda\beta_2$ has the role of δ_2 above and the greater a parameter λ_j is, the greater the endogeneity problem in x_j is, for $j = 1, 2, \ldots, p_2$. Λ can be seen as a

endogeneity tolerance parameter.

This paper focuses on estimators that impose prior information about δ_2 or Λ, derived through the moment conditions

$$E[x_1'\epsilon] = 0,$$
$$V_{21}^{-1}E[x_2'\epsilon] = \Lambda\beta_2.$$

For convenience we maintain the terminology of exogenous and endogenous variables. Nevertheless, this could be redefined for the researcher convenience.

The moment conditions can be replaced by the following estimating equations:

$$x_1'(y - x_1\beta_1 - x_2\beta_2) = 0,$$
$$x_2'M_1x_2)^{-1}(x_2'(y - x_1\beta_1 - x_2\beta_2)) = \Lambda\beta_2.$$

The solution to this problem, if $(I_{p_2} + 1)$ is non singular, is

$$\hat{\beta}_1^\Lambda = \hat{\beta}_1^0 + (x_1'x_1)^{-1}(x_1'y_2)\Lambda(I_p + \Lambda)^{-1}\hat{\beta}_2^0,$$
$$\hat{\beta}_2^\Lambda = (I_{p_2} + \Lambda)^{-1}\hat{\beta}_2^0.$$

Let $\hat{\beta}^\Lambda = (\hat{\beta}_1^\Lambda, \hat{\beta}_2^\Lambda)'$, one can notice that for this case,

$$\hat{\beta}_1^\Lambda \rightarrow \beta_1 - C_1^{-1}C_{12}\delta_2 + C_1^{-1}C_{12}(I_{p_2} + \Lambda)^{-1}(\Lambda\beta_2 - \delta_2),$$
$$\hat{\beta}_2^\Lambda \rightarrow (I_{p_2} + \Lambda)^{-1}(\beta_2 + \delta_2).$$
The proposed estimator $\hat{\beta}_\Lambda$ also arises as a solution to a penalized Ridge regression version of model (1), where \{\lambda_1, \lambda_2, ..., \lambda_{p_2}\} are penalties that apply to the p_2 endogenous regressors only. In this framework \(\hat{\beta}_\Lambda\) is obtained as

$$\hat{\beta}_\Lambda = \arg\min\beta_n \sum_{i=1}^n (y_i - x_i\beta)^2 + (x_i' M_2 x_2) \sum_{j=1}^{p_2} \lambda_j \beta_{2j}^2. \quad (3)$$

Interpreting Λ as a penalty parameter allows for applications to other contexts in which our ignorance and lack of identification about some parameters determine that their estimation involves a burden for the desirable properties of the full model. Note that for the Ridge regression method, the λ_js are assumed to be non-negative, and thus they are interpreted as shrinkage parameters, that is, larger values of λ shrinks the corresponding parameter estimates towards zero. However, for our purposes we could consider $\lambda > 0$ in order to account for different types of bias.

One important case in (3) is when $\Lambda = \text{diag}\{\lambda\}$ and $\lambda > 0$ is the same positive scalar for all endogenous variables. In this case, all endogenous variables regression parameters are subject to the same penalty, that is, they shrink according to λ. This is the case of Galvao and Montes-Rojas (2010) where all fixed-effects parameters are reduced in a similar fashion. There are two important special cases of the above method. First, the model with no shrinkage, and secondly, the model that totally shrinks β_2. In the former case, if $\lambda = 0$, then $\hat{\beta}^0$ is the standard OLS estimator where both x_1 and x_2 are used. In this case, the endogeneity in x_2 produces an endogeneity bias in the estimators of β_1 and β_2. In the second case, if $\lambda \to \infty$, then $\hat{\beta}^\infty$ is the estimator where only x_1 is used and β_2 is set to 0. This will generate an omitted variable bias for the estimation of β_1.

3 Imposing a prior on endogeneity

In practice the estimator above is infeasible because Λ (or δ_2) is unknown and the parameters cannot be identified. If Λ is known the parameters are point identified, while if Λ is known to belong to a defined set the parameters are set identified by the range of the tuning parameter. We propose a Bayesian estimator where we impose a prior on the tuning parameter and compute the estimate of the parameters of interest based on the penalized regression. The prior of the tuning parameter thus implicitly defines a weighted set for identification and produces a posterior distribution for an estimator of β. As in a Bayesian context, the properties of the derived estimator depends on how accurate the prior is.

Our uncertainty on β_2 (and δ_2) is modeled by λ, the proportional endogeneity tuning parameter. By modeling bias, thus, we mean to impose a prior distribution on δ_2, the amount of endogeneity, through the parameter λ, and then compute the distribution of the associated parameters of interest. As an example, suppose that $\lambda \sim \chi^2_1$, so that it has mean equal to 1. Then δ_2 is of the same magnitude as β_2, that is, $E[\hat{\delta}_2] = \beta_2 + \delta_2 = 2\beta_2$.

The distribution of $\hat{\beta}_\Lambda = (\hat{\beta}_1^\Lambda, \hat{\beta}_2^\Lambda)$ can then be obtained from the distribution of $\hat{\beta}^0$ and λ. Define $h(\beta|y, x)$ as the density function of this estimator. A point estimate can be based
on the mean (i.e. $E_{\lambda}[^{\hat{\beta}}_{\lambda}]$), median (i.e. $Q_{\hat{\beta}_{\lambda}}(0.5)$, where $Q(\cdot)$ is the quantile function) or any other statistic of interest such as mode. As a practical matter, $h(.)$ can be simulated by using the asymptotic normality of $\hat{\beta}^0$ and the distribution of λ, which is assumed to be independent of (y, x).

4 Connection with a Bayesian estimator

In order to see the connection of our estimator with a Bayesian estimator, consider the loss function in a standard Ridge regression problem

$$L(\beta, \lambda) = \sum_{i=1}^{n} (y_i - x_i \beta)^2 + \lambda |\beta|^2.$$

Consider now a Bayesian estimator based on assuming a Gaussian likelihood for $\epsilon \equiv y - x\beta$, $p(y, x|\beta)$ where for simplicity the variance of ϵ is assumed to be known and equal to 1:

$$p(y, x|\beta, \lambda) \propto \exp \left(-\frac{1}{2} \sum_{i=1}^{n} (y_i - x_i \beta)^2 \right).$$

Now consider a prior on (β, λ) given by

$$p(\beta, \lambda) = \phi(\beta; 0, 1/\lambda) g(\lambda) \propto \lambda g(\lambda) \exp \left(-\frac{1}{2} \lambda |\beta|^2 \right),$$

where $\phi(., m, v)$ is the Gaussian density function with mean m and variance v. Here β is assumed to have a Gaussian prior and λ a density function $g(\lambda)$. By Bayes theorem, the posterior can be obtained by

$$p(\beta, \lambda|y, x) = p(y, x|\beta, \lambda)p(\beta, \lambda) \propto \lambda g(\lambda) \exp \left(-\frac{1}{2} L(\beta, \lambda) \right).$$

Define $y_{\lambda} = [y:0]$ and $x_{\lambda} = [x: \sqrt{\lambda}]$, and note that $\hat{\beta}^\lambda$ is the OLS estimator of a regression of y_{λ} on x_{λ}. Then using (Zellner, 1971, p.66) results

$$p(\beta, \lambda|y, x) \propto \lambda g(\lambda) \exp \left(-\frac{1}{2} \left((y_{\lambda} - x_{\lambda} \hat{\beta}^\lambda)'(y_{\lambda} - x_{\lambda} \hat{\beta}^\lambda) + (\beta - \hat{\beta}^\lambda)'x_{\lambda}'x_{\lambda}(\beta - \hat{\beta}^\lambda) \right) \right).$$

Note that for fixed λ, the maximum value of $p(\beta, \lambda|y, x)$ corresponds to $\beta = \hat{\beta}^\lambda$. The posterior distribution of β, $p(\beta|y, x)$, requires integrating out λ which depends on the assumed distribution $g(.)$. Note that $p(\beta|y, x)$ is different from $h(\beta|y, x)$, the density function of our estimator. In Figure 1, we illustrate this idea. Assume for simplicity that β is unidimensional and consider a given joint posterior distribution of β and λ. For each β, $p(\beta|y, x)$ is
obtained by computing the mean over all possible values of λ. For instance, for β_1, $p(\beta_1|y, x)$ corresponds to the integration over λ along the vertical line at β_1, and the same for β_2 and β_3. However, $h(\beta|y, x)$ is obtained by computing the mean over those values of λ for which $\beta = \beta^\lambda$, i.e. only those for which for a given λ it finds the maximum density. For β_1 that only corresponds to λ_1, β_2 to λ_2 and β_3 to λ_3, as in the dashed line. Thus, the distribution of our proposed estimator uses the most likely β for each λ.

5 Conclusions

This paper proposed a novel way of dealing with endogeneity bias when there is no additional information such as instrumental or proxy variables. In particular, a prior is imposed on the endogeneity bias and the resulting estimators can be constructed both as a method-of-moments estimator or in a Ridge penalized regression framework.

Several extensions could be proposed for future research. First, the parameters modeling the endogeneity bias could depend on both prior information and observable variables. Second, this model could be applied to the l_1 penalization case using the asymptotic results in Knight and Fu (2000), and could be extended to model selection with several endogenous regressors. Third, the proposed model could be applied to forecasting where there is uncertainty about some parameter values and prior information would be imposed.

References

Figure 1: Bivariate posterior distribution of (β, λ)