PROGRAMME SPECIFICATION

KEY FACTS

<table>
<thead>
<tr>
<th>Programme name</th>
<th>Mechanical and Design Engineering with Foundation Year and Placement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Award</td>
<td>BEng (Hons)</td>
</tr>
<tr>
<td>School</td>
<td>Science & Technology</td>
</tr>
<tr>
<td>Department or equivalent</td>
<td>Engineering</td>
</tr>
</tbody>
</table>
| UCAS Code | H350
| | H351 |
| Programme code | USMDEB ENBEMDE01
| | USMDBP ENBEMDE01 |
| Type of study | Full Time |
| Total UK credits | 480 |
| Total ECTS | 240 |

PROGRAMME SUMMARY

This programme, which is only offered full time, starts with a Year 0 foundation year that provides the essential mathematical and scientific background necessary to progress to Programme Stage 1 of the BEng programme in Mechanical and Design Engineering. The foundation year is studied at Westminster Kingsway College at their Victoria Campus. The BEng programme is divided into three Programme Stages (Programme Stages 1, 2 and 3), each occupying a full academic year, which leads to a BEng degree.

The entry point to the BEng programme with foundation year is at the start of the foundation year. If you reach the required level at the end of the foundation year you can transfer to Programme Stage 1 of the Mechanical and Design Engineering programme or to other eligible BEng Engineering programmes.

The core topics studied in the foundation year are Mathematics, Mechanics and Physics. You also study Computing and IT, Communication and Study Skills and undertake a programme of laboratory tests at City University.

The BEng Honours Mechanical and Design Engineering with Foundation Year Programme is a four year full time degree comprising 480 credits (4800 study hours) structured as four Programme Stages, each typically delivered over 22 contact weeks, 4 examination weeks, 4 reflective learning (private study) weeks and 8 vacation weeks (which may be used for private study) per academic year.

This BEng programme has the objectives of developing the scientific, mathematical and technical skills required by industry today to design advanced machines. It also aims to support the development of sustainable and innovative solutions to real-world challenges in transport,
manufacturing and more generally, to all processes that require environmentally friendly approaches meeting emerging and greener societal demands. Students will study general engineering, as well as specialised mechanical engineering and design topics.

During the degree, engineering knowledge is built-up and nurtured, with specific objectives associated with each component Programme Stage.. Most modules of Stage 1 are common across the engineering degrees offered by City University. This introductory year is intended to give you a thorough grounding in the fundamental and applied science and mathematics appropriate for an engineer, as well as developing personal skills such as time and quality management. You will have the opportunity to undertake preliminary engineering designs through group activity. Common to all stage 1 and 2 and across all Engineering Programmes, you will be offered a core module termed as the “Engineer in Society”, which will introduce the engineering discipline with particular emphasis on some key topics such as sustainability and the environment. It will also incorporate personal tutoring and a series of seminars to improve your soft skills (presentations, CV building...)

During the second year, the module will focus on an introduction to engineering management and the circular economy. It will also incorporate training in employability and promote multi-skills engineering. This module during the first two stages will be assessed by both the lecturers and the personal tutors. In stage 3, the same module is still offered but tailored to the engineering discipline you have chosen. Emphasis will be given to an interdisciplinary approach to engineering, sustainability, societal and moral impact of engineering. Further help in building your curriculum and enhancing your employability potential will also be provided.

At the end of Programme Stage 1 (assuming that you have met the academic requirements described below) you will have the opportunity to decide whether to remain on the BEng (Hons) Mechanical and Design Engineering degree or switch to one of the 2 other engineering BEng (Hons) degrees that share all stage 1 modules, namely Aerospace Engineering or Civil and Infrastructure Engineering.

In later stages, you will study specialized mechanical and design engineering topics such as fluid mechanics, thermodynamics, solid mechanics, materials and manufacturing, electronics, mechatronics, control, computational fluid and structural mechanics, composite structures, engineering design, materials and manufacturing, renewable energy, heat transfer and engineering design.

Design projects and an optional industrial placement will boost the practical engineering skills of our graduates. Interdisciplinarity in the programme will be enhanced by increasing elements of computer science, programming, data analysis, autonomous systems, robotics and other general topics such as Engineering and Society and employability skills that will be common to all disciplines.

If you wish to gain practical experience during your degree, then you have the option of spending 12 months between Programme Stages 2 and 3, on a paid industrial placement or split them over two summers between the years of study. We strongly recommend this (see the subsequent section entitled ‘What Placement opportunities are available’).
Certificate of Higher Education
Upon successful completion of Programme Stage 1 you will be able to: (i) discuss underlying concepts and principles associated with fundamental science and technology, (ii) to develop skills in time and quality management and (iii) present, interpret and evaluate quantitative and qualitative data within your subject of study appropriate to the formation of an engineer. At this stage, having gained all the necessary credits, you will either: (i) automatically progress onto Programme Stage 2 of the BEng (Hons) in Mechanical and Design Engineering or (ii) decide to switch onto one of the other 2 BEng (Hons) engineering degrees that share all stage 1 modules, namely Aerospace Engineering or Civil and Infrastructure Engineering or (iii) leave the University with a Certificate of Higher Education in Engineering.

Diploma of Higher Education
Upon successful completion of Programme Stage 2 you will have: (i) built upon your previous knowledge and experience, (ii) developed critical understanding of the well-established principles, and of the way in which those principles have developed in your area of study and (iii) advanced your skills of enquiry and different approaches to problem-solving as well as identify the limitations of your knowledge in your subject. At this stage, having gained all the necessary credits, you will either: (i) automatically progress onto Programme Stage 3 of the BEng (Hons) in Mechanical and Design Engineering or (ii) leave the University with a Diploma of Higher Education in Mechanical and Design Engineering. At the end of Programme Stage 2, you also have the opportunity to move to Programme Stage 3 of the Meng (Hons) degree if you have achieved an overall aggregate mark of at least 50% at the end of Programme Stage 2.

BEng (Hons) Degree
Upon successful completion of Programme Stage 3 you will: (i) have developed a coherent systematic, detailed knowledge of your discipline and (ii) be able to confidently develop and employ appropriate techniques and methods in mathematical modelling and experimentation for engineering problem-solving, analysis and design. At this stage, having gained all necessary credits, you will be either: i) awarded a BEng (Hons) degree or ii) subject to discretion of the Assessment Board, offered the possibility to continue your studies joining stage 4 MEng (Hons). If you will not have reached enough credits you will leave the University with an ordinary bachelor’s degree.

Aims
The overall aim of the BEng (Hons) in Mechanical and Design Engineering is to provide an excellent education in engineering with specialised training for a professional career in the industries underpinned by the mechanical engineering disciplines, including energy engineering and automotive engineering. This will include the research, development, design, production, commissioning, operation and management aspects of those industries. In addition, students are expected to exercise leadership in project management and initiate independent research and critical analysis into specialized and advanced fields.
in engineering.

The specific aims (further elaborated below in the section ‘What will I be expected to achieve’) are to produce graduates who:
- have a broad knowledge and clear understanding of the key aspect of study to solve a range of complex technical problems in Mechanical engineering;
- are able to apply and integrate knowledge and understanding of other engineering disciplines;
- have developed a natural curiosity about the scientific world and are able to tackle and solve engineering problems;
- have a sound understanding of business and management to participate effectively in team work;
- are aware of their professional and ethical responsibilities, the global and societal impact of engineering solutions, as well as of economic, sustainability and political issues;
- are able to communicate to a wide range of audiences, exhibit team loyalty and have the ability and confidence to undertake further training of a professional leadership role in industry.

WHAT WILL I BE EXPECTED TO ACHIEVE?

This programme has been developed in accordance with the QAA Subject Benchmark for Engineering. Learning outcomes which must be delivered by BEng Programmes, accredited by Professional Engineering Institutions as meeting the educational requirements for registration as a Chartered Engineer, are defined in general terms in the 4th edition of the Accreditation of Higher Education Programmes, published at www.engc.org.uk. The module learning outcomes listed below are accordingly all cross-referenced to these mandated AHEP4 learning outcomes.

On successful completion of this programme, you will be expected to be able to:

Knowledge and understanding:
- Explain and demonstrate the scientific principles upon which mechanical engineering is based, including those which underpin current technological advances in the sector (C1).
- Apply mathematical and computational approaches to analyse and solve engineering components and systems (C2).
- Assess and discuss the engineering concept/design/build/test process, including customer requirements, dependencies, assumptions, constraints, uncertainties and creative solutions to problems; also, with recent or planned developments in practice (C5, C6, C7, C9, C12, C13).
- Apply practical experience of the concept of fitness for purpose and the separate consideration of production, operation, maintenance and disposal of an engineering system (C5, C6, C7, C12).
- Apply practical experience of the multi-disciplinary character of engineering and making decisions based upon social, environmental/sustainable development, ethical, legal,
economic and commercial considerations (C7, C8, C15).
- Conform with current technological, manufacturing and operational practice in the engineering industry and with future trends in relevant areas (C4, C7, C13).
- Discuss concepts from outside engineering which nonetheless drive engineering practice and business development (C5, C13).
- Apply the broad range of management tools and techniques required to run an engineering business (C9, C10, C14, C15).
- Apply your knowledge and understanding, of the type described above, specific to the principles and practice of vehicles design, manufacture, operation and maintenance and awareness of developments in the field (C5, C6, C12, C13).
- Assess the mechanical engineering industry as a business enterprise in national and international economies (C5).

Skills:
- Tackle confidently unfamiliar engineering problems (C18).
- Gather, integrate and evaluate information from various sources including technical literature (C4)
- Break down a problem into a series of engineering tasks to be solved under a set of multidisciplinary constraints (C5).
- Communicate effectively in technical and non-technical languages, written, oral and graphical forms to individuals and large audiences; be proficient with IT and communications systems (C17).
- Use laboratory equipment for data measurement, processing, interpreting and analysis; be proficient in the application of analytical, computational and CAD techniques specifically to the analysis and design of mechanical systems (C3, C13).
- Use workshop equipment to produce or modify an engineering component (C12).
- Be proficient with analytical, computational and experimental techniques (including assessing the limitations of the results obtained), coupled with experience and decision-making, to solve engineering problems (C2, C3).
- Apply initiative, creativity and innovation to design, construct and test a system, component or process to meet specifications (C5).
- Evaluate designs, processes or products and make improvements, taking into consideration associated commercial risks, societal and environmental impact (C7, C9, C10).
- Work with technical uncertainty (C13).
- Work with levels of detail appropriate to the criticality of the task while adding innovation to address societal, user and customer needs (C5).
- Plan for and manage time/cost/quality of an engineering project, including adjusting plans to changing circumstances and controlling such adjustments (C7, C9, C10).
- Exercise leadership both as an individual and as a member of a team (C14, C15).

Values and attitudes:
- Put the needs of the team ahead of one’s own needs and willingly take the lead in difficult situations (C16).
- Willingly take on the professional and ethical responsibilities of engineers in society (C8); commit to continuous improvement to enhance professional skills and benefit society (C18).
- Comprehend the value of the mechanical engineering to society and to the global economy (C7) while recognising the need for the mechanical engineering industry to contribute in a sustainable way (C7).
- Recognise that there is only one type of engineer, a person that tackles and solves problems, independently of gender, religion or race and that promotes inclusion (C11).

HOW WILL I LEARN?

The majority of learning in Higher Education is typically conducted through a combination of supervised and private study. Engineering is a practical discipline which benefits from significant supervised study, but it cannot be learnt through lectures alone. Teaching involves a combination of theoretical, experimental and computational study. Our approach is to encourage critical thinking and foster your curiosity. By the time that you reach Programme Stage 3, the tutorial and practical elements are managed more by you, especially in relation to your individual project work. Contact hours are made up of: lectures, which direct you towards the most important topics in the field and which allow discussion and clarification of areas of uncertainty with expert staff; tutorials where staff are on hand to help with problem-solving exercises; laboratory and workshop classes where practical situations and methods are encountered; and research or design/build projects, both individually and in groups, where personal skills, teamwork, creativity and critical thinking are developed and where knowledge built up elsewhere in the Programme is integrated and developed. Site visits are used to place taught sessions in the context of real-world industries or products. Private study is essential to the achievement of the learning outcomes and are guided using both formative and summative coursework tasks set during the academic year. Your private study is also supported by the use of Moodle, City’s Online Learning Environment. This provides online access to module content, feedback, guidance on completing coursework, audio-visual resources etc. In Foundation Year and Programme Stages 1 and 2 there is a higher proportion of supervised study (compared with Programme Stage 3), with typically 20-24 hours of contact timetabled each week. These supervised contact hours are designed to assist and to focus your private study.

WHAT TYPES OF ASSESSMENT AND FEEDBACK CAN I EXPECT?

Assessment and Assessment Criteria

The Programme is subdivided into Programme Stages (years of study) and each Programme Stage into modules (coherent groupings of syllabus topics addressing
particular Learning Outcome types). Each module in the programme may have one or more assessment components of differing types. Assessment components may involve more than one assessment task (e.g., they may be an aggregate of different coursework marks or multiple examination papers). Modules that contain multiple assessment components (either coursework or exam) for which individual minimum pass marks are required are specified in the relevant module specifications.

Some modules will have an examination component in addition to a coursework (continuous assessment) component. Many skills need to be honed by practice: to this end formative assessments, may be organised within each module with appropriate and timely feedback mechanisms.

Examinations are used because they provide a comprehensive tool to assess the acquired knowledge and understanding and problem-solving skills. The time pressure and lack of prior warning about specific issues to be tackled is representative of real-world situations faced by practicing engineers. Coursework assessments vary from paper assignments (which may be similar to examinations but with longer time scales and with access permitted to information sources) to the assessment of practical skills which cannot be done in the exam hall. For example, communication skills (e.g. presentations, drawings and written reports), personal skills (such as team work or leadership), planning and design (both software and hardware), data analysis, critical review of information and the use of workbench and CAE tools are usually assessed by means of coursework tasks.

Often coursework tasks may be set which are not to be assessed but which are valuable as a learning experience. This is known as formative coursework and is often the key to improving grades on assessed or summative coursework. You will receive feedback from all coursework assessments, both formative and summative, to enable you to develop and enhance your assessment performance.

Assessment Criteria are descriptions, based on the intended learning outcomes, of the skills, knowledge or attitudes that you need to demonstrate in order to complete an assessment successfully, providing a mechanism by which the quality of an assessment can be measured. Grade-Related Criteria are descriptions of the level of skills, knowledge or attributes that you need to demonstrate in order achieve a certain grade or mark in an assessment, providing a mechanism by which the quality of an assessment can be measured and placed within the overall set of marks. Assessment Criteria and Grade-Related Criteria will be made available to you to support you in completing assessments. These may be provided in programme handbooks, module specifications, on the virtual learning environment or attached to a specific assessment task.

Feedback on assessment

Feedback will be provided in line with our Assessment and Feedback Policy. In particular, you will normally be provided with feedback within three weeks of the submission deadline or assessment date. This may be written (on the hard copies and online) or oral (in class), specific to you or generally applicable, and would normally include a provisional grade or mark. If the coursework submitted is a laboratory report, then your work will not be returned until three weeks after the last report has been submitted. Laboratories are undertaken by groups of you in rotation over periods of many weeks and consequently the last group of
you may complete the laboratory and submit the report many weeks after the first group. For end-of-module examinations or an equivalent significant task (e.g. an end-of-module project), a generic feedback will normally be provided within four weeks of the last day of exam period. The timescale for feedback on final year projects or dissertations may be longer and starts from the date of the final presentation of the project.

The full policy can be found at: https://www.city.ac.uk/__data/assets/pdf_file/0009/452565/Assessment-and-Feedback-Policy.pdf

Assessment Regulations

In order to pass your programme, you should complete successfully (or be exempted from) the relevant modules and assessments and will therefore acquire the required number of credits. You also need to pass each preceding Programme Stage of your Programme in order to progress to the following Programme Stage.

Your overall aggregate mark will be calculated by combining the aggregate marks from Programme Stages 1, 2 and 3 in the ratio 1:3:6. The pass mark for each module is 40%. In some modules there will be a written exam that has the individual pass mark of 40%. Details of which assessment components need to be passed individually is provided in the Module Specification.

If you fail an assessment component or a module, the following will apply.

Compensation: where, if you fail up to a total of one sixth of the total credits at first or resit attempt, you may be allowed compensation if compensation is permitted for the module involved (see the What will I study section of the Programme Specification), and it can be demonstrated that you have satisfied the Learning Outcomes of the modules in the Programme Stage, and a minimum overall mark of at least 30% has been achieved in the module to be compensated, and an aggregate mark of at least 40% has been achieved for the Programme Stage under consideration.

Where you are eligible for compensation at the first attempt, this will be applied in the first instance rather than offering a resit opportunity.

If you receive a compensated pass in a module then you will be awarded the full 15 credits for that module. The original component marks will be retained in the record of marks and your original module mark and will be used for the purpose your Award calculation.

Note that the total amount of compensated credits cannot exceed 30 during your whole study degree.

Resit: Where you are not eligible for compensation at the first attempt, you will normally be offered one resit attempt.

If you are successful in the resit, you will be awarded the full credit for that module. The mark for each assessment component that is subject to a resit will be capped at the pass mark for the module. This capped mark will be used in the calculation of the final module mark together with the original marks for the components that you passed at first attempt.

If you do not meet the pass requirements for a module and do not complete your resit by
the date specified, you will not progress to the next Programme Stage and the Assessment Board will require you to be withdrawn from the Programme.

If you fail to meet the requirements for a particular Programme Stage, the Assessment Board will consider whether you are eligible for an Exit Award as per the tables shown below.

If you would like further information about the way in which assessment works at City, please see the full version of the Assessment Regulations at: https://www.city.ac.uk/__data/assets/pdf_file/0007/453652/s19.pdf

WHAT AWARD CAN I GET?

Bachelor's degree with honours in Mechanical and Design Engineering

<table>
<thead>
<tr>
<th>Programme Stage</th>
<th>HE Level</th>
<th>Credits</th>
<th>Weighting %</th>
<th>Class</th>
<th>% Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foundation Year</td>
<td>3</td>
<td>120</td>
<td>0</td>
<td>I</td>
<td>70</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>120</td>
<td>10</td>
<td>II</td>
<td>upper division 60</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>120</td>
<td>30</td>
<td>II</td>
<td>lower division 50</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>120</td>
<td>60</td>
<td>III</td>
<td>40</td>
</tr>
</tbody>
</table>

Bachelor's degree with honours in Mechanical and Design Engineering with Placement

<table>
<thead>
<tr>
<th>Programme Stage</th>
<th>HE Level</th>
<th>Credits</th>
<th>Weighting %</th>
<th>Class</th>
<th>% Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foundation Year</td>
<td>3</td>
<td>120</td>
<td>0</td>
<td>I</td>
<td>70</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>120</td>
<td>8</td>
<td>II</td>
<td>upper division 60</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>120</td>
<td>26</td>
<td>II</td>
<td>lower division 50</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>120</td>
<td>56</td>
<td>III</td>
<td>40</td>
</tr>
<tr>
<td>Placement</td>
<td>N/A</td>
<td>120</td>
<td>10</td>
<td>II</td>
<td>upper division 60</td>
</tr>
</tbody>
</table>
Ordinary degree in Mechanical and Design Engineering

<table>
<thead>
<tr>
<th>Programme Stage</th>
<th>HE Level</th>
<th>Credits</th>
<th>Weighting %</th>
<th>Class</th>
<th>% Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foundation Year</td>
<td>3</td>
<td>120</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>120</td>
<td>10</td>
<td>With Distinction</td>
<td>70</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>120</td>
<td>30</td>
<td>With Merit</td>
<td>60</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>60</td>
<td>60</td>
<td>Without Classification</td>
<td>40</td>
</tr>
</tbody>
</table>

Diploma of Higher Education in Mechanical and Design Engineering

<table>
<thead>
<tr>
<th>Programme Stage</th>
<th>HE Level</th>
<th>Credits</th>
<th>Weighting %</th>
<th>Class</th>
<th>% Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foundation Year</td>
<td>3</td>
<td>120</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>120</td>
<td>25</td>
<td>With Distinction</td>
<td>70</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>120</td>
<td>75</td>
<td>With Merit</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Without Classification</td>
<td>40</td>
</tr>
</tbody>
</table>

Certificate of Higher Education in Engineering

<table>
<thead>
<tr>
<th>Programme Stage</th>
<th>HE Level</th>
<th>Credits</th>
<th>Weighting %</th>
<th>Class</th>
<th>% Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foundation Year</td>
<td>3</td>
<td>120</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>120</td>
<td>100</td>
<td>With Distinction</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>With Merit</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Without Classification</td>
<td>40</td>
</tr>
</tbody>
</table>

WHAT WILL I STUDY?

Foundation Year 0

The foundation year consists of one compulsory module worth 120 credits consisting of the following components: Mathematics, Mechanics, Physics, Computing and IT and Communication and Study Skills.

To proceed to Programme Stage 1 you must have achieved the appropriate level in the
foundation year which is an overall mark of 65% (achieving individually in each component the following: 65% in Mathematics, 65% in Mechanics, 65% in Physics, 60% in Computing and IT and 60% in Communication and Study Skills).

<table>
<thead>
<tr>
<th>Module Title</th>
<th>SITS Code</th>
<th>Module Credits</th>
<th>Core or Elective</th>
<th>Can module be compensated?</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foundation Year Module</td>
<td>ME0001</td>
<td>120</td>
<td>Core</td>
<td>No</td>
<td>3</td>
</tr>
</tbody>
</table>

Programme Stage 1
Programme Stage 1 comprises eight core Level-4 modules, totalling 120 credits. To pass Stage 1 you must obtain all 120 credits, as specified in the Programme Scheme.

<table>
<thead>
<tr>
<th>Module Title</th>
<th>SITS Code</th>
<th>Module Credits</th>
<th>Core or Elective</th>
<th>Can module be compensated?</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Engineer in Society - Social Responsibility</td>
<td>EG1000</td>
<td>15</td>
<td>Core</td>
<td>No</td>
<td>4</td>
</tr>
<tr>
<td>Engineering Design I</td>
<td>EG1002</td>
<td>15</td>
<td>Core</td>
<td>No</td>
<td>4</td>
</tr>
<tr>
<td>Introduction to Mechanics of Materials and Manufacturing</td>
<td>EG1004</td>
<td>15</td>
<td>Core</td>
<td>No</td>
<td>4</td>
</tr>
<tr>
<td>Electronics I</td>
<td>EG1005</td>
<td>15</td>
<td>Core</td>
<td>No</td>
<td>4</td>
</tr>
<tr>
<td>Introduction to Programming</td>
<td>EG1007</td>
<td>15</td>
<td>Core</td>
<td>No</td>
<td>4</td>
</tr>
<tr>
<td>Engineering Science</td>
<td>EG1003</td>
<td>15</td>
<td>Core</td>
<td>No</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics I</td>
<td>EG1001</td>
<td>15</td>
<td>Core</td>
<td>No</td>
<td>4</td>
</tr>
<tr>
<td>Introduction to Thermodynamics and Fluid Mechanics</td>
<td>EG1008</td>
<td>15</td>
<td>Core</td>
<td>No</td>
<td>4</td>
</tr>
</tbody>
</table>

Programme Stage 2
Programme Stage 2 comprises eight core Level-5 modules, totaling 120 credits. To pass Programme Stage 2 you must obtain all 120 credits, as specified in the Programme Scheme.
If you wish to gain practical experience you have the option of spending a year on paid industrial placement between Programme Stages 2 and 3. You also have the option to split the placement over two periods in the summer between the years of study.
Upon obtaining all 120 credits, you may progress to Programme Stage 3 of the BEng Programme or request to be transferred to Programme Stage 3 of the MEng programme. To do so, you must have achieved a module average of at least 50% at the end of Programme Stage 2.

Programme Stage 3
Programme Stage 3 comprises seven core Level-6 modules, totaling 120 credits. To pass Programme Stage 3 you must obtain all 120 credits, as specified in the Programme Scheme.
A student who has successfully completed Programme Stage 3 of a BEng programme may, with the approval of the Assessment Board, transfer to Programme Stage 4 of the related MEng programme provided that they have obtained an overall aggregate mark of at least 50% at Programme Stage 3.

<table>
<thead>
<tr>
<th>Module Title</th>
<th>SITS Code</th>
<th>Module Credits</th>
<th>Core or Elective</th>
<th>Can module be compensated?</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual Project</td>
<td>30</td>
<td>Core</td>
<td>No</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>The Engineer in Society - Sustainable Design</td>
<td>15</td>
<td>Core</td>
<td>Yes</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Structural Analysis and Finite Element Method</td>
<td>15</td>
<td>Core</td>
<td>Yes</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Engineering Design III</td>
<td>15</td>
<td>Core</td>
<td>Yes</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Heat and Mass Transfer</td>
<td>15</td>
<td>Core</td>
<td>Yes</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Through Life Engineering</td>
<td>15</td>
<td>Core</td>
<td>Yes</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Control Engineering</td>
<td>15</td>
<td>Core</td>
<td>Yes</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

TO WHAT KIND OF CAREER MIGHT I GO ON?

Many Mechanical Engineering graduates enter the profession via one of the major international companies such as Rolls Royce, BP and Shell, consultants in leading transport companies (like AVL, Ricardo and Perkins), car and electric vehicles manufacturers (including Jaguar Land Rover, Ford Lotus, Delphi, Siemens and Bosch), and specialist firms such as Howden and DBS. However, beyond the discipline of mechanical engineering, this degree equips you with the technical expertise, initiative and management skills to be able to face modern challenges in any number of branches of the engineering industry (from F1 car design, to offshore oil and gas exploration and aircraft and aerospace engineering). Your creativity and innovation in design will serve you well in the broad profession.

The Centre for Career & Skills Development provides a service to current undergraduates and postgraduates, as well as recent graduates of the University. Their aim is to provide you with advice, information and skills that you need to make a smooth transition into the world of professional engineering. If you would like further information on the careers support available at City, please go to: http://www.city.ac.uk/careers.

WHAT STUDY ABROAD OPTIONS ARE AVAILABLE?

At present these options are not available; they remain under development.

WHAT PLACEMENT OPPORTUNITIES ARE AVAILABLE?
If you wish to take a professional placement between Programme Stages 2 and 3 of your degree, then you will need to register accordingly at the beginning of Programme Stage 2. We strongly encourage you to undertake a 12-month placement or 6-8 week Summer Internship, as you will benefit greatly from the experience; providing you with a distinct advantage when you seek employment upon graduation. SMCSE’s Professional Liaison Unit (PLU) collaborates with the University Career and Skills Development Service to deliver a series of Professional Development workshops to prepare you for searching for and applying for a work placement. The PLU is in regular contact with companies and other organisations concerning the availability of training opportunities and will advise you on making applications.

You are welcome to make your own applications but you will be asked to discuss these with the PLU’s Work Based Learning Advisor. Support is provided in the SMCSE Placement & Internships Resource Centre module on Moodle.

If you are on an approved Professional Placement then your experience will be graded on the basis of (i) reports from two visits made by the Visiting Tutor (a member of academic staff) familiar to the subject and (ii) your final report. Informal contact is maintained throughout the 12 months, as necessary. Although your placement is reported on the degree transcript, the grading does not contribute to the final degree result.

Placement guidelines are issued to you and your employer at the commencement of training, and these include a placement health and safety booklet. The guidelines also include a section on workplace learning. Early in the placement year, you are required to produce a placement plan in conjunction with your Workplace Supervisor and the Visiting Tutor.

WILL I GET ANY PROFESSIONAL RECOGNITION?

Accrediting Body: The Institution of Mechanical Engineers

Nature of Accreditation

Our current Mechanical Engineering degrees are accredited by the above institutions, providing a path for students on those programmes to gain Chartered Engineering status. This programme has been designed to satisfy the above institutions’ accreditation criteria and an application for accreditation will be made in due course. We have every expectation that these degrees will similarly receive full accreditation.

HOW DO I ENTER THE PROGRAMME?

To enter the Mechanical and Design Engineering with Foundation Year programme
the following requirements typically apply.

UCAS tariff points
96

A-levels
CCC; including grade C at A-Level Mathematics. You are also required to have passed GCSE English Language and Mathematics at grade 4 (C), or higher.

IB
27 points total, including level 4 in Higher Level maths and a science subject OR 6 in Standard Level maths and 4 in Higher Level science.

BTEC
BTEC (Level 3 Nationals only).

- DDM in Engineering (First teaching Sept 2016) with minimum grade M in units 1 - Engineering Principles, 7 - Calculus to Solve Engineering Problems and 8 - Further Engineering Mathematics. Candidates must also have a minimum of grade 6 in GCSE Mathematics and Science/Physics.

- DDM in Civil Engineering / Construction and the Built Environment / Building Services Engineering (First teaching Sept 2017) with minimum grade M in unit 1 – Construction Principles and unit 15 – Further Mathematics for Construction. Candidates must also have a minimum of grade 6 in GCSE Mathematics and Science/Physics.

T-Level
in Design, Surveying and Construction. Must have an overall “Distinction” with at least B in the core. Must have “Distinction” in the Occupational specialism of Civil Engineering

English language requirements
For overseas candidates, an IELTS score of 6.0 (with a minimum of 6.0 in all components) is required. TOEFL is not accepted as evidence of English language ability for students that require a Confirmation of Acceptance for Studies.

RPL/RPEL Requirement
Direct entry into Programme Stage 2 may be considered for candidates who have successfully completed the first year of a similar accredited MEng or BEng degree.

Scholarships
Undergraduate students are considered for a wide range of awards (scholarships, bursaries and prizes) throughout their studies in the School. These (internally and externally funded) awards range from £500-£9000 and they are based on a combination of academic merit and hardship. A number of these awards are also available to
international students. Further information can be found at:
http://www.city.ac.uk/study/undergraduate/funding-and-financial-support/scholarships-and-bursaries

Version: 2
Version date: February 2024
For use from 2024-25