Innovative strategies for the analysis and control of cable-stayed bridges under strong earthquakes

Dr Alfredo Camara
Lecturer in Structural Engineering
City University London

Research Centre for Civil Engineering Structures
17th June 2015
Index

1. Introduction
2. Seismic analysis
3. Anti-seismic devices
4. Conclusions and further studies
Index

1 Introduction

2 Seismic analysis

3 Anti-seismic devices

4 Conclusions and further studies
Analysis and control of cable-stayed bridges under strong earthquakes

Why?

- High social and economical relevance
- Large flexibility + reduced damping → seismic behaviour?
The scientific approach began in the 1990’s

The research is focused on:

- Spatial variability
- Cable-structure interaction
- Connections along the deck
- Multi-span bridges
- Curved decks

Lack of studies on the towers \rightarrow key elements

Good seismic response of cable-stayed bridges, however ...

Ji-Lu bridge (Taiwan)
Chi-Chi earthquake
(1999, $M_W = 7.3$)
Trend in constructed cable-stayed bridges
Floating deck-tower connections with anti-seismic devices

Paradigmatic bridge: Rion-Antirion
- Greece, 2004
- Multi-span
- $286 + 3 \times 560 + 286$
- Seismic area: $a_g = 0.48$ g

- Deck-tower connection: only transversely
- 4 nonlinear viscous dampers: $\alpha_d = 0.15$
- Fuse restrainer (no dissipation under wind loads)

Earthquake: $M_W = 6.4$ (June 2008)
Scope of Pushover analysis

Pushing statically using load patterns representing the inertia forces

Purpose

- To expose possible structure weaknesses
Scope of Pushover analysis

Pushing statically using load patterns representing the inertia forces

Purpose

- To expose possible structure weaknesses
- To estimate the seismic response under large earthquakes

Find the target displacement \rightarrow demand of the studied earthquake
Scope of Pushover analysis

Pushing statically using **load patterns** representing the inertia forces

Purpose
- To expose possible structure weaknesses
- To estimate the seismic response under large earthquakes

Find the **target displacement** → demand of the studied earthquake
Modal Pushover Analysis (Chopra & Goel 2002)

- **i-mode Load pattern 2D**: modal force $s_i = \Gamma_i m \phi_i$

- **i-mode Target displacement**:

 - $s_n^j = \Gamma_n^j m \phi_n$
 - MPA → 2D
 - $s_n^X = s_n^Z = 0$

Seismic response of cable-stayed bridges
Novelty

3D Pushover analysis for each mode

\[s_n^j = \Gamma_n^j m\phi_n \]
Extended Modal Pushover Analysis

Mathematical background

\[
\phi_n^T m \ddot{\mathbf{u}} + \phi_n^T c \mathbf{u} + \phi_n^T \mathbf{f}_S(u, \dot{u}) = -M_n \left(\Gamma_n^X \ddot{u}_g^X(t) + \Gamma_n^Y \ddot{u}_g^Y(t) + \Gamma_n^Z \ddot{u}_g^Z(t) \right) + \ddot{u}_{g,n}^*(t)
\]

\[
\ddot{q}_n + 2\xi_n \omega_n \dot{q}_n + \frac{F_{sn}}{M_n} = -\ddot{u}_{g,n}^*(t) \rightarrow \text{SDOF}
\]

\[
\frac{F_{sn}}{M_n} = \sqrt{\left(\frac{F^X_{sn}}{M_n} \right)^2 + \left(\frac{F^Y_{sn}}{M_n} \right)^2 + \left(\frac{F^Z_{sn}}{M_n} \right)^2}
\]

\[
\ddot{q}_n = \sqrt{(q^X_n)^2 + (q^Y_n)^2 + (q^Z_n)^2}
\]
EMPA: Results

- If the modes are governed by one direction → EMPA ≈ MPA
- EMPA: Better prediction of the \textbf{axial force} for small-medium bridges
The transverse and longitudinal response \textit{interact} in nonlinear range.

Novelty

3D Pushover combining the dominant modes in transverse and longitudinal directions
Coupled Nonlinear Static Pushover: approach

2 modes participate, but ... only **one mode** is involved in equations

- One nonlinear static analysis → **FAST**
- Modes different than governing ones considered elastic → **SAFE**
Results

- Good estimation with advanced Pushover: errors typically below 20%
- Coupled Pushover yield very accurate solutions

However:
- Pushover results could be misleading if the tower damage is very large
Computational cost

Cable-stayed bridges under strong earthquakes, beyond the elastic range:

- **Analysis**: Advanced Pushover
- **Verification**: Nonlinear dynamics (HHT)
Index

1. Introduction
2. Seismic analysis
3. Anti-seismic devices
4. Conclusions and further studies
Without anti-seismic devices:

- Extensive cracking in key tower sections, especially small bridges on soft soil with central cable-system
- Reaction of the deck against the towers → large damage
- Proposed: transverse dampers between deck and towers

 - Yielding metallic dampers
 - Viscous fluid dampers
Proposed deck-tower dampers:

- Pushover \rightarrow force starting the damage in the tower; P_{max}

Viscous fluid Damper (VD)

![Diagram of Viscous fluid Damper (VD)]
Proposed deck-tower dampers:

- Pushover \rightarrow force starting the damage in the tower; P_{max}

Metallic yielding Damper (MD)

![Diagram of metallic yielding damper with dimensions and labels](image)

Seismic response of cable-stayed bridges
Fixed plate dimensions. Number of plates defined to yield prior to the tower damage (no control on the ductility)

\[P_y = 0.85 \cdot 0.9 \cdot P_{\max} \rightarrow \text{Number of plates} \]
Peak deformations along the tower

\[\varepsilon_{tot} = \max(\varepsilon_A, \varepsilon_B, \varepsilon_C, \varepsilon_D) \]

Concrete softening

Concrete cracking
Typically **Viscous dampers** are more efficient than **Triangular plates**

- Care should be taken with the **low-cycle fatigue** in Yielding dampers
- Dampers in deck-tower connection:
 - more efficient if the main span is below 500 m
1 Introduction

2 Seismic analysis

3 Anti-seismic devices

4 Conclusions and further studies
Conclusions

Regarding the analysis strategies ...

- **Extension of ‘Modal Pushover’** to consider the 3D nature of vibration modes

- Proposal of a **Coupled Pushover** which combines the dominant modes in one nonlinear static analysis

Regarding the anti-seismic devices ...

- Dampers connecting the deck and the towers are more efficient if the main span is below 500 m:
 - Improved control with Viscous Dampers, but maintenance?
 - The low-cycle fatigue is important in yielding Metallic Dampers
Further studies: advanced Pushover methods

- Application to Prestressed Concrete Containment Vessels

- Modes 1 and 2: $f = 4.4\text{Hz}$
 - Global bending modes

- Mode 3: $f = 6.2\text{Hz}$
 - Local bending modes

- Mode 9: $f = 9.2\text{Hz}$
 - Torsion mode
Further studies: advanced Pushover methods

- Application to long bridges under asynchronous earthquakes

Animation (deformation amplified)
Further reading

Acknowledgements

- Ashraf Ayoub (CUL)
- Miguel A. Astiz Suárez (UPM)
- Eleftheria Efthymiou (CUL)
- Roberto Cristantielli (PUB/CUL)

... and thank you all!

alfredo.camara@city.ac.uk
Innovative strategies for the analysis and control of cable-stayed bridges under strong earthquakes

Dr Alfredo Camara
Lecturer in Structural Engineering
City University London