The Role of Baseline Physical Similarity to Humans in Consumer Responses to Anthropomorphic Animal Images

Paul M. Connell (Cass Business School, City University, London)

May 2013
The Role of Baseline Physical Similarity to Humans in Consumer Responses to Anthropomorphic Animal Images

Abstract

While humans have a long history of anthropomorphising animals and the use of animal imagery in the marketplace and popular culture is commonplace, the phenomenon has received little attention. This research investigates the role of how consumers respond to anthropomorphic portrayals of animal mascots that differ on their baseline physical resemblance to humans. In order to test this assertion, an experimental study was conducted with 62 undergraduate participants from a large state university in the United States. Results from the study indicate that evaluations of anthropomorphic portrayals of animals with a lower baseline physical similarity to humans are less favourable than non-anthropomorphic portrayals. In contrast, evaluations of anthropomorphic portrayals of animals with a higher baseline physical similarity are more favourable than non-anthropomorphic portrayals.
“Two legs good, four legs bad” (George Orwell, *Animal Farm*)

Throughout civilization, people have imbued creatures from the natural world with human traits and motivations. Marketers have capitalized on this tendency by creating a plentitude of anthropomorphic animal mascots for a variety of products and services. For example, Tony the Tiger endorses Kellogg's Frosted Flakes, Smokey the Bear warns people to be careful with fire, and the Energizer Bunny beats drums in commercials promoting Energizer batteries. However, there are a number of non-anthropomorphic animal mascots as well. A galloping horse adorns the grill of Ford Mustang vehicles, a flying bird adorns the packaging of Bird's Eye vegetables, and two bulls charge at each other on the label of Red Bull energy drinks. Despite this observation, very little is known about how people respond to animal images when they are presented in anthropomorphic versus non-anthropomorphic form, leaving practitioners with little guidance as to how to use animal imagery in branding, packaging, and advertising.

Research on animal imagery in advertising and popular culture is sparse and has mostly delved into the symbolic roles that animals play (Lerner & Kalof, 1999; Phillips, 1996; Spears & Germain, 2007). A slightly larger but growing literature hones in on effects of anthropomorphism on consumer behavior. Some of this literature focuses on effects of brand advertising mascots on brand attitudes (Garretson & Burton, 2005; Garretson & Niedrich, 2004) and associated policy implications (Garretson & Burton, 1998; Neeley & Schumann, 2004). Most recently, researchers have begun to explore how anthropomorphic portrayals affect perceptions of risk (Kim & McGill, 2011), how products themselves can be seen as alive (Chandler & Schwarz, 2010), or how products are effectively anthropomorphized (Aggarwal & McGill, 2007; Delbaere, MacQuarrie, & Phillips, 2011; Landwehr, McGill, & Herrmann, 2011, McKeaveney, Herrman, Befurt, & Landwehr, 2012). However, these literatures on animal imagery and anthropomorphism rarely meet. Rather, findings related to anthropomorphic animal portrayals in consumption settings are typically side notes to other research questions. For example, previous content analyses reveal that a large percentage of animated animal mascots are presented anthropomorphically (Callcott & Lee, 1994), and that animals are more likely to be portrayed anthropomorphically (versus non-anthropomorphically) in advertisements for
nondurable goods in magazine advertisements than for other product categories such as nondurables and services (Spears, Mowen, & Chakraborty, 1996). The objective of this research is to add to the literatures of anthropomorphism and animal imagery by delving into how responses toward portrayals of animals in marketplace situations are affected by anthropomorphism. Because people tend to think of the world in terms of the human experience, and tend to be drawn toward things that are more similar to themselves (Byrne, 1971; Byrne, Clore, & Smeaton, 1986; Miller, Downs, & Prentice, 1998), this research examines the role of perceived animal similarity to humans.

Conceptual Framework

Anthropocentrism and Physical Similarity to Humans

Anthropomorphism is the process of assigning real or imagined human characteristics, intentions, motivations, or emotions to nonhuman objects, often motivated by explaining and understanding the behavior of those nonhuman agents (Epley et al., 2008; Epley, Waytz, & Cacioppo, 2007). People do this with a seemingly unending array of things, including brands and television characters (Fournier, 1998; Russell, Norman, & Heckler, 2004). Recent research has just begun to uncover motivations for anthropomorphizing nonhuman objects. Making sense of one's world, also known as effectance motivation, has emerged as one of these motivations (Waytz, Morewedge, Epley, Monteleone, Gao, & Cacioppo, 2010). While people's imaginations and technological advances allow them to simulate the experiences of nonhuman animals, they can never truly fully understand how animals very different from humans experience the world. For example, while people can scuba dive, they are limited to seeing coral reefs in three spectrums of color rather than the four spectrums many tropical fish are able to see. While people can peer down from an observation deck, they can never know what it is like for migrating birds to peer down to the earth as they fly over it. Thus, people can only conceive the world in terms of the way that they themselves experience it, and they are bound to do so in an anthropocentric manner (Kant, 1963; Werth, 1998). As a consequence, it may be easier to relate to things that resemble humans more in their physical appearance.

The word "anthropomorphism" is derived from two Greek words: "anthropos" and "morphe." The first, "anthropos," means "human." Interestingly, the second word used in creating the term is
"morphe" (form), and not "nous" (mind). Thus, anthropomorphism was originally conceived in physical, and not cognitive, terms. It is not too surprising, however, when one considers that humans are unique on earth not only in their brain capacity but also in their physical appearance. No other animal walks on two legs with an erect spine and hands that can grasp objects. Illustrating this point, in Orwell's Animal Farm, the pigs in the story finally become fully transformed into sentient beings when they begin walking upright, which comes after they had gained advanced cognitive functioning.

Thus, people are likely to infer sentience from physical cues, and tend to anthropomorphize things that look and move like humans (Delbaere et al., 2011; Gray, Gray, & Wegner, 2007; Morewedge, Preston, & Wegner, 2007; Persson, Laaksolahti, & Lonnqvist, 2000; Werth, 1998). For example, while octopi have been found to be highly intelligent with sophisticated problem-solving skills (Catalini, 2008), their non-human, almost otherworldly appearance thwarted the ability to observe this intelligence for millennia. This concept of physical similarity is important because it has shaped the way that people view the animals around them. Furthermore, people are particularly adept at categorizing animals (Henley, 1969; Tversky, 1977) and also have a propensity to ascribe traits based on appearance alone (Albright, Kenny, & Malloy, 1988). Because of this tendency to ascribe traits based on appearance, animals that are more physically similar to humans are generally perceived as more humanlike (Driscoll, 1995; Eddy, Gallup, & Povinelli, 1993; Plous, 1993). Interestingly, research in the robotics literature has converged on similar findings. That is, people have an easier time attributing a humanlike mind to robots that physically appear more human by means of their appearance and their expressions (Boden, 2006; Breazeal, 2000; Duffy, 2003).

Similarity, Liking, and Prototypicality

A large body of research has converged on the finding that people like similar others. The foundational work in this literature stream was built on attitude similarity (Byrne, 1971; Byrne, Clore, & Smeaton, 1986; Heider, 1958). This research has been subsequently extended to domains such as similarity in personality traits (Tesser & Campbell, 1980; Tesser & Paulhus, 1983), race (Ensher & Murphy, 1997; Hamner, Kim, Baird, & Bigoness, 1974), and sexual orientation (Chen & Kenrick, 2002). Miller and colleagues (1998) found that even trivial similarities, such as a shared birthday,
cause people to view others more favorably. Thus, the findings from this literature would suggest that enhancing any animal's physical similarity to humans by anthropomorphizing it would lead to more positive reactions to it.

However, research on prototypes and schemas provides an explanation for how anthropomorphizing an animal image could actually backfire and create a less positive response. As mentioned previously, animals differ on their baseline physical similarity to humans. An anthropomorphic portrayal of an animal that is more similar to humans in its natural form would be more prototypical of that species than an anthropomorphic portrayal of an animal that is less similar to humans. This distinction is important because people tend to prefer objects that are considered more average or prototypical (Halberstadt & Rhodes, 2000; Hoegg & Alba, 2008; Martindale, 1984; Martindale & Moore, 1988; Martindale, Moore, & Borkum, 1990). Similarly, research on processing fluency suggests that because prototypical objects are more easily processed, this results in increased positive affective response toward those objects (Hoegg & Alba, 2008; Reber, Schwarz, & Winkielman, 2004; Reber, Winkielman, & Schwarz, 1998). Research on schema congruity has also converged on similar findings. That is, schema incongruity can lead to increased elaboration and an adverse effect on evaluations (Lee & Mason, 1999; Meyers-Levy & Tybout, 1989, Peracchio & Tybout, 1996).

Some animals, at a baseline, are more physically similar to humans in their natural form. For example, bears have binocular vision and forward-facing ears, are tailless, have hand-like claws that can be used to grasp objects, and can walk bipedally over short distances. Their faces can be manipulated to display humanlike emotional expressions when anthropomorphized while still being recognizable as the original animal. Thus, an anthropomorphic portrayal of an animal such as a bear that is high in baseline physical similarity to humans is likely to be relatively prototypical and schema congruent. In contrast, most other animals do not share all these key morphological characteristics with humans. Presenting animals that are lower in baseline physical similarity to humans anthropomorphically requires that more liberties be taken with their anatomy, which will make them appear less prototypical and less congruent with the schema for their species.
The Current Research

The following experimental study tests responses to visual anthropomorphic portrayals of animals based on their baseline physical similarity to humans. Because prototypicality is associated with more positive responses, and because schema incongruity can lead to negative evaluations, this research hypothesizes that people will evaluate nonanthropomorphic portrayals of animals with lower baseline physical similarity to humans more favorably than anthropomorphic portrayals. However, because animals with a higher baseline similarity to humans retain their prototypicality and schema congruency, but are simultaneously made more similar to humans when presented in anthropomorphic form, this research hypothesizes that people will evaluate anthropomorphic representations more favorably than nonanthropomorphic representations. Formally:

H1: People will respond more favorably to anthropomorphic portrayal of animals with a higher baseline physical similarity to humans, but will respond more favorably to nonanthropomorphic portrayals of animals with a lower baseline similarity to humans.

Method

Procedure

Sixty-two undergraduate students participated in exchange for course credit in a between-subjects design with two manipulated factors (animal: lower/higher similarity and portrayal: nonanthropomorphic/anthropomorphic). Participants were told that their university was helping a local high school with research to assist them in choosing a new school mascot. The mascot images were a bear (higher similarity) and a lion (lower similarity). These animal species were selected due to their frequency of use as animal mascots (both in anthropomorphic and natural form). In addition, a pre-test was run to confirm that bears are perceived as more humanlike than lions. Fifty-three undergraduate student participants from a large state university in the Northeastern United States rated bears and lions, embedded within a list of other animals in order to mask the study's hypothesis, on how similar each animal was to human beings on a 7-point scale. The pre-test confirmed that bears were perceived as more similar to humans than lions ($M_{Bear} = 3.55/7.0; M_{Lion} = 2.90/7.0; t = ...
3.33, $p < .001$). In the experiment, participants viewed either a bear or a lion mascot that was presented either anthropomorphically or nonanthropomorphically in its visual appearance. Participants then completed two dependent measures, where they evaluated positive affect toward and connection to the mascot.

Manipulations. In the non-anthropomorphic condition, participants were shown black, quadrupedal, left-facing, full body profile silhouette images of the animals (see appendix for stimulus images). In the anthropomorphic condition, participants were shown a cartoon depiction of a basketball player that was graphically altered by an artist from a human into an anthropomorphic animal with a bear's or lion's face and a humanlike expression. In order to assure that participants correctly identified the animals as bears or lions, the name of the animal was included in the instructions for the two animal images (e.g., “The school is considering using this (bear/lion) as its school mascot.”).

Dependent Measures. Because a mascot is a branding element, participants completed a self-brand connection scale for the mascot (Escalas & Bettman, 2005) on 7-point scales. The scale included items such as "I can identify with this mascot" and "I feel a personal connection to this mascot" and was found to have good reliability in this study ($\alpha = .95$). As another dependent measure designed to capture positive affect felt toward the mascot, participants were asked to imagine their feelings for the mascot as if they were being measured on a thermometer (0 = very cold feelings, 50 = neutral feelings, 100 = very warm feelings). Participants wrote their response in degrees on a blank below a graphical representation of the thermometer. Feeling thermometers are used broadly within behavioral research (Payne, Burkley, & Stokes, 2008), and are advantageous because they more closely approximate a continuous variable than 7-point affect scales (Alwin, 1997) and require little verbal effort on the part of the participant during appraisal of affect (Smith, 2003).

Control variables. Participants also completed Aaker's (1997) brand personality measures as control variables. Two factors, sincerity and ruggedness, were particularly of interest in the context of this study. Because the mascot images were presented in a cartoonlike form, they could possibly be perceived as "cuter." Thus, a "cuter" image is likely to be perceived both as less rugged and also as more sincere than a nonanthropomorphomorphic image. Both of these measures could impact evaluations of
sports mascots. That is, because sports teams are competitive in nature, more rugged mascots might be preferred. However, more sincere images might also be preferred because they would be perceived as friendly, cheerful, and down-to-earth (Aaker, 1997), thus increasing positive affect. If these measures systematically vary with the independent variable and subsequently affect the dependent variable, then they could potentially confound results of the study (Field, 2013; Steg, Buunk, & Rothengatter, 2008). Therefore, these measures could potentially serve as covariates in order to control for possible confounding influences (Field, 2013; Steg et al., 2008). Both brand personality measures were found to have adequate reliability ($\alpha_{\text{Ruggedness}} = .64$, $\alpha_{\text{Sincerity}} = .78$). Indeed, the anthropomorphic portrayals were perceived as less rugged ($M_{\text{Nonanthropomorphic}} = 4.75/7$, $M_{\text{Anthropomorphic}} = 3.78/7$, $F(1, 61) = 9.72, p < .01, \eta^2 = .14$) and as more sincere ($M_{\text{Nonanthropomorphic}} = 3.08$, $M_{\text{Anthropomorphic}} = 3.54$, $F(1, 61) = 3.77, p < .05, \eta^2 = .06$). Unexpectedly, the lower similarity animal (lion) images were seen as both more sincere ($M_{\text{Lower}} = 4.53/7$, $M_{\text{Higher}} = 4.03/7$, $F(1, 61) = 2.33, p < .10, \eta^2 = .04$) and as more rugged ($M_{\text{Lower}} = 3.50/7$, $M_{\text{Higher}} = 3.09/7$, $F(1, 61) = 3.00, p < .05, \eta^2 = .05$) than the higher similarity (bear) images (no differences between animal type were expected for the brand personality measures). However, there were no interaction effects of animal similarity and anthropomorphic portrayal on either brand personality variable (Fs < 1). Means and standard deviations for each cell are provided in table 1 (next page).
Table 1: Experimental Results

<table>
<thead>
<tr>
<th>Dependent Measures</th>
<th>Experimental Condition Means (Standard Deviations)</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lower Similarity Animal (Lion)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nonanthropomorphic (n=17)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anthropomorphic (n=14)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Higher Similarity Animal (Bear)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nonanthropomorphic (n=16)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anthropomorphic (n=15)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feeling Thermometer (0 to 100)</td>
<td>61.53 (29.88)</td>
<td>51.34 (14.12)</td>
<td>39.25 (22.17)</td>
<td>47.13 (22.89)</td>
<td></td>
</tr>
<tr>
<td>Self-brand Connection (1 to 7)</td>
<td>3.40 (1.79)</td>
<td>2.29 (1.67)</td>
<td>1.98 (1.06)</td>
<td>2.36 (1.78)</td>
<td></td>
</tr>
</tbody>
</table>

Brand Personality Control Variables

<table>
<thead>
<tr>
<th>Experimental Condition Means (Standard Deviations)</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower Similarity Animal (Lion)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonanthropomorphic (n=17)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anthropomorphic (n=14)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Higher Similarity Animal (Bear)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonanthropomorphic (n=16)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anthropomorphic (n=15)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sincerity (1 to 7)</td>
<td>3.22 (.85)</td>
<td>3.81 (1.05)</td>
<td>2.93 (.82)</td>
<td>3.25 (.89)</td>
</tr>
<tr>
<td>Ruggedness (1 to 7)</td>
<td>4.89 (1.02)</td>
<td>4.12 (1.02)</td>
<td>4.59 (1.53)</td>
<td>3.44 (1.24)</td>
</tr>
</tbody>
</table>

As suspected, there was also a positive relationship between ruggedness and the feeling thermometer measure ($\beta = .40$, $t = 3.38$, $p < .001$) as well as the self-brand connection measure ($\beta = .27$, $t = 2.17$, $p < .05$). Similarly, there was also a positive relationship between sincerity and the feeling thermometer measure ($\beta = .27$, $t = 2.14$, $p < .05$) as well as the self-brand connection measure ($\beta = .36$, $t = 2.93$, $p < .01$). Thus, these two measures were included in the model as covariates to control for potential confounding influences.

Results

The hypothesis that participants would evaluate non-anthropomorphic (anthropomorphic) animal images more positively when the animal's baseline physical similarity to humans was lower (higher) was tested with a MANCOVA where animal similarity (lower/higher) and visual presentation (anthropomorphic/nonanthropomorphic) were entered into the model as categorical independent variables, mascot ruggedness and sincerity were entered as covariates, and the feeling thermometer and self-brand connection measures were entered as dependent variables. There were main effects of both the ruggedness ($F (2,51) = 4.27$, $p < .01$) and sincerity ($F (2,51) = 4.28$, $p < .01$) covariates on the multivariate test. There were no other significant main effects. The 2-way interaction between
animal similarity (lower/higher) and visual presentation (anthropomorphic/non-anthropomorphic) was significant for the multivariate test \(F(2,51) = 3.18, p < .05, \eta^2 = .11 \) as well as for both the feeling thermometer \(F(1,52) = 5.07, p < .05, \eta^2 = .09 \) and the self-brand connection dependent variables \(F(1,52) = 4.53, p < .05, \eta^2 = .08 \). Ratings on the feeling thermometer and self-brand connection measures were more favorable for the higher similarity animal (bear) when it was presented anthropomorphically, but ratings on the feeling thermometer and self-brand connection measures were less favorable for the lower similarity animal (lion) when it was presented anthropomorphically. Thus, the results support hypothesis 1. Means and standard deviations for each cell are provided in table 1.

Simple contrasts were first run for each animal condition. The simple contrast within the lower similarity (lion) condition was significant for the multivariate test \(F(2,25) = 2.72, p < .05, \eta^2 = .18 \) as well as for the self-brand connection measure \(F(1,26) = 5.41, p < .05, \eta^2 = .17 \), with the hypothesized effect of stronger self-brand connections with the non-anthropomorphic portrayal than the anthropomorphic portrayal \((M_{\text{Non-anthropomorphic}} = 3.40/7, M_{\text{Anthropomorphic}} = 2.29/7) \). The simple contrast within the lower similarity (lion) condition was not significant for the feeling thermometer measure but was in the hypothesized direction \((M_{\text{Non-anthropomorphic}} = 61.53/100, M_{\text{Anthropomorphic}} = 51.34/100, F < 1) \).

The simple contrast within the higher similarity (bear) condition was not significant for the multivariate test \(F(2,23) = 1.58 \) or for the self-brand connection measure \(F < 1 \). However, the simple contrast for the higher similarity (bear) condition was significant for the feeling thermometer measure \(F(1,24) = 3.13, p < .05, \eta^2 = .12 \), with the hypothesized effect of more positive feelings associated with the anthropomorphic image than for the non-anthropomorphic image \((M_{\text{Non-anthropomorphic}} = 39.25/100, M_{\text{Anthropomorphic}} = 47.13/100) \).

Simple contrasts were then run for each anthropomorphism portrayal condition. Within the non-anthropomorphic condition, the simple contrast was significant for the multivariate test \(F(2,26) = 4.03, p < .05, \eta^2 = .24 \) as well as for both the feeling thermometer \(F(1,27) = 5.09, p < .05, \eta^2 = .16 \) and self-brand connection measures \(F(1,27) = 6.07, p < .05, \eta^2 = .18 \) with the effect of more positive evaluations of the lower similarity animal when it was presented in non-anthropomorphic form.
Discussion

Findings from this research indicate that an animal's baseline physical similarity to humans is an important determinant of how people react to it. In an experimental study, participants who viewed an animal lower in baseline physical similarity to humans had more positive evaluations of the animal image when it was presented non-anthropomorphically. In contrast, participants who viewed an animal higher in baseline physical similarity to humans had more positive evaluations of the animal image when it was presented anthropomorphically. Thus, while both anthropomorphic and non-anthropomorphic animal imagery is prevalent in the marketplace, this research reveals that there are important boundary conditions that affect whether anthropomorphism is likely to result in more positive reactions to animal imagery.

This research contributes to understandings of two streams of research that have been sparsely investigated in consumer research: animal imagery and anthropomorphism. Indeed, while these two literatures are highly compatible with one another, they have rarely met. This is the first study that empirically examines responses to anthropomorphic animal imagery, and provides insights into how and why people might respond more favorably to anthropomorphic portrayals of animals compared with non-anthropomorphic portrayals of animals. The findings of this research indicate that the effects of anthropomorphism not only affect how much people like the animal imagery in question, but also how deeply people develop self-brand connections to these advertising mascots. These findings have important implications for enhancing brand equity, improving attitudes toward advertising featuring animal imagery, and perhaps even increasing the likelihood of one brand being...
selected over another at point of purchase based on the animal imagery on the label and subsequent loyalty for that brand.

While findings of this research indicate that physically transforming an already physically similar animal to more resemble humans can enhance consumer response to it, future research could determine whether the type and degree of physical transformation are also important. For example, increasingly realistic images of anthropomorphism that are now possible with improved computer graphic animation might lead to another problem that has been identified in the robotics literature: heightened similarity to humans might draw attention to subtle imperfections or differences that appear disturbingly odd. Mori (1970) referred to this phenomenon as the Uncanny Valley. While cartoon images of anthropomorphic animals (such as the one used in this experimental study) often appear cute, it is possible that more realistic portrayals would push these animals into the Uncanny Valley.

Finally, cultural relationships with certain animals convolute the impressions and reactions toward them. While some species have been long admired for their beauty and the joy they bring to people (e.g., butterflies, songbirds), others are feared (e.g., sharks, snakes, spiders) or are loathed as pests (e.g., mice, pigeons). Some have a long history of serving mankind (e.g., horses, dogs) while others have been used primarily as sources of food (e.g., cows, chickens). Indeed, previous research has indicated that people morally disengage from species commonly consumed as food when contemplating their consciousness (Loughnan, Haslam, & Bastian, 2010). As these relationships are likely to vary between cultures, future research would determine whether cross-cultural differences are important in how people respond to anthropomorphic portrayals of animals.

Conclusion

While humans have a long and rich history of anthropomorphizing the animal kingdom, much remains to be learned about why, when, and how people assign human characteristics to other animals. Recent studies have only begun to explore some of these questions (e.g., Aggarwal & McGill, 2007; Chandler & Schwarz, 2010; Epley et al., 2007; Epley et al., 2008; Kim & McGill, 2011). Similarly, while the literature has produced a smattering of findings on the cultural meanings of
animals (Philips, 1996) and the effectiveness of advertising mascots (Garretson & Burton, 2005; Garretson & Niedrich, 2004), beyond this research and a few content analyses (Callcott & Lee, 1994; Moyers, 2001; Spears et al., 1996; Stallard, 2003) the question of animal anthropomorphism has yet to be explored. This research contributes to the understanding of animal anthropomorphism by demonstrating that anthropomorphism can enhance, or at least not harm, consumer responses to animals that already have a high baseline physical similarity with humans by capitalizing on effects of similarity and liking that have been well established. On the other hand, for animals that have a lower baseline similarity to humans, anthropomorphism can result in less favorable evaluations of the animal images because these images are not prototypical or schema-congruent. Thus, they become more difficult to process and result in more negative evaluations of them than if they were left in their natural form.
Appendix: Experimental Stimuli

<table>
<thead>
<tr>
<th>Nonanthropomorphic</th>
<th>Higher Physical Similarity to Humans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lion</td>
<td>Bear</td>
</tr>
<tr>
<td>Anthropomorphic</td>
<td></td>
</tr>
<tr>
<td>Kid Lion</td>
<td>Kid Bear</td>
</tr>
</tbody>
</table>
References

Copyright Cass Business School 2013

Copyright Cass Business School 2013

Copyright Cass Business School 2013

