PROGRAMME SPECIFICATION

KEY FACTS

| Programme name | Civil and Infrastructure Engineering
| | Civil and Infrastructure Engineering with Placement |
| Award | MEng (Hons)
| School | Mathematics, Computer Science and Engineering |
| Department or equivalent | Engineering |
| UCAS Code | H292
| | H293 |
| Programme code | US???
	US???
Type of study	Full Time
Total UK credits	480
Total ECTS	240

PROGRAMME SUMMARY

Civil engineers have the opportunity to design and construct the environment that we live in. A very important aspect of this environment is the infrastructure that we make use of in every aspect of our lives. Infrastructure supplying water and power to our homes, allowing us to travel safely and efficiently, protecting our environment and providing us with homes and places of work. This infrastructure needs to offer us a sustainable future by ensuring circularity of design, i.e. reuse not just recycling, efficient construction that minimises material use and a path to zero carbon construction. These aims can be achieved by combining an understanding of the fundamental behaviour of civil engineering materials, structural elements, fluid flow, waves and the ground with data from surveying, sensors, visualisations and the power of artificial intelligence and other computer analysis techniques.

During the degree, engineering knowledge is built-up and nurtured, with specific objectives associated with each component Programme Stage. Development of design skills and teamwork are at the heart of the City, University of London engineering degrees throughout the programme. Programme Stage 1 is common across all of the engineering degrees. This introductory year is intended to give you a thorough grounding in the fundamental and applied science and mathematics appropriate for an engineer, as well as developing personal skills such as time and quality management. During Programme Stage 1, you will have the opportunity to undertake preliminary engineering designs through group activity. Common to all stage 1 and 2 and across all Engineering programmes, you will be offered a core module termed as the Engineering in Society. During stage 1 this module will introduce the engineering discipline with particular emphasis on some key topics such as sustainability, the environment, healthcare, space, autonomous vehicles. It will also incorporate personal tutoring and a series of seminars to improve your soft skills (presentations, CV building...). During the second year, the module will focus on an introduction to engineering management and the circular economy. It will also incorporate training in employability and promote multi-skills engineering. This module during the first two stages will be assessed by both the lecturers and the personal tutors. In stage 3 and in stage 4, the same module is also offered but it is tailored to the Civil Engineering discipline you have chosen. Particular emphasis will be given to an interdisciplinary approach to engineering, sustainability, societal and moral impact of engineering. Further help in building your curriculum and enhancing your employability potential will also be provided.
At the end of Programme Stage 1 (assuming that you have met the academic requirements described below) you will have the opportunity to decide whether to remain on the MEng (Hons) Civil and Infrastructure Engineering degree or switch to one of 6 other engineering MEng (Hons) degrees. This flexibility in choice at the end of Programme Stage 1 enables you to follow the discipline that best matches your strengths and most attracts you.

In Programme Stage 2 you will start to specialise and you will develop your experience of civil engineering design. Apart from expanding your knowledge on Mathematics and the role of Engineering in society, in stage 2 you will gain specialist understanding of geology, structures and soil mechanics, as well as their integration in design, and you will advance your knowledge of fluid mechanics while also studying measurement and data analysis techniques.

Your studies become more applied in Programme Stage 3 including the analysis and design of specialist geotechnical, hydraulic and structural forms, and the use of computational analysis techniques. As with other years, a significant proportion of Programme Stage 3 is focused upon design and individual project. Your design tasks require you to draw together and apply knowledge gained over a number of subject areas. This year you will also study construction management and address the challenges of providing sustainable and ethical designs that are safe to construct. The Engineer in Society module in Programme Stage 3 focuses on the design for net zero carbon emission targets, with case studies and invited lectures from industry professionals.

In the Programme Stage 4 you learn to apply advanced solutions to complex civil and infrastructure engineering problems. There is a challenging design activity for a live large-scale integrated civil engineering infrastructure project, such as a port development. Level-7 studies in advanced analytical methods applied to geotechnical, hydraulics and structural systems support your design activities. In this stage you have to complete 2 elective subjects that can be chosen over a wide variety of module to give you the opportunity to direct your degree to your specific area of interest.

If you wish to gain practical experience during your degree, then you have the option of spending 12 months on a paid industrial placement. This industrial placement can be taken either between Programme Stages 2 and 3 or between Programme Stages 3 and 4 or split them over two summers between the years of study. We strongly recommend this (see the subsequent section entitled ‘What Placement opportunities are available?’).

At the end of the programme, you will have acquired the knowledge and understanding of analysis and design techniques, practical and personal skills required for a career in Civil and Infrastructure Engineering. The Integrated Masters (MEng Honours) Programme develops you to a high level of professional as well as engineering competence, through broad engineering experience involving market analysis, commercial operational and regulatory constraints, project and team management, multi-disciplinary design.

The MEng Honours Programme in Civil and Infrastructure Engineering is a four-year, or five-year with placement, full time degree comprising 480 credits (4800 study hours) structured as four Programme Stages, each typically delivered over 22 contact weeks, 6 examination weeks, 4 reflective learning (private study) weeks and 8 vacation weeks (which may be used for private study) per academic year. An MEng (Hons) Programme therefore requires a commitment of 40 study hours per week during the academic year.
Certificate of Higher Education
Upon successful completion of Programme Stage 1 you will be able to: (i) discuss underlying concepts and principles associated with fundamental science and technology, (ii) to develop skills in time and quality management and (iii) present, interpret and evaluate quantitative and qualitative data within your subject of study appropriate to the formation of an engineer. At this stage, having gained all the necessary credits, you will either: (i) automatically progress onto Programme Stage 2 of the MEng (Hons) in Civil and Infrastructure Engineering or (ii) decide to switch onto one of 6 other MEng (Hons) engineering degrees, or (iii) leave the University with a Certificate of Higher Education in Engineering.

Diploma of Higher Education
Upon successful completion of Programme Stage 2 you will have: (i) built upon your previous knowledge and experience, (ii) developed critical understanding of the well-established principles, and of the way in which those principles have developed in your area of study and (iii) advanced your skills of enquiry and different approaches to problem-solving as well as identify the limitations of your knowledge in your subject. At this stage, having gained all the necessary credits, you will either: (i) automatically progress onto Programme Stage 3 of the MEng (Hons) in Civil and Infrastructure Engineering or (ii) leave the University with a Diploma of Higher Education in Civil and Infrastructure Engineering.

BEng (Hons) Degree
Upon successful completion of Programme Stage 3 you will: (i) have developed a coherent systematic, detailed knowledge of your discipline and (ii) be able to confidently develop and employ appropriate techniques and methods in mathematical modelling and experimentation for engineering problem-solving, analysis and design. At this stage, having gained all the necessary credits, you will either: (i) automatically progress onto Programme Stage 4 of the MEng (Hons) in Civil and Infrastructure Engineering or (ii) exit the University with a BEng (Hons) degree in Civil and Infrastructure Engineering provided all Stage 3 credits have been awarded for studies undertaken on the MEng degree programme or (iii) leave the University with a bachelors ordinary degree in Civil and Infrastructure Engineering if you failed to gain sufficient credits for the award of a BEng (Hons) degree.

MEng (Hons) Degree
Upon successful completion of Programme Stage 4 (having gained all of the necessary credits) you will have met the requirements of the MEng (Hons) in Civil and Infrastructure Engineering degree and will: (i) have developed an in-depth and comprehensive knowledge and understanding of Civil and Infrastructure engineering, (ii) be able to create, apply and synthesize techniques and methods in mathematical modelling and experimentation for problem-solving, analysis and design of a wide variety of civil engineering infrastructures and situations, (iii) be able to develop originality in the application of knowledge and techniques and advance scholarship in your area of study and (iv) be able to lead or participate in group design activities which mirror realistic engineering practices and situations.

Aims
The overall aim of the MEng (Hons) in Civil and Infrastructure Engineering is to provide an excellent education in engineering with specialised training for a professional career in Civil
and Infrastructure Engineering. In addition, students are expected to exercise leadership in project management and initiate independent research and critical analysis into specialized and advanced fields in engineering.

The specific aims are to produce graduates who:

- have a broad and in-depth knowledge and comprehensive understanding to solve a range of complex technical problems in civil engineering, scientific research, design environments and professional practice,
- are equipped to perform at a high technical level,
- are able to apply and integrate knowledge and understanding of other engineering disciplines to support their studies in civil and infrastructure engineering,
- are logical, numerate, have a natural curiosity about the scientific world and are able to problem-seek as well as problem-solve,
- demonstrate an attention to detail, without losing sight of the overall picture,
- have a sound knowledge and a practical understanding of business and management and participate effectively in team work,
- are aware of their professional and ethical responsibilities, the global and societal impact of engineering solutions, as well as the economic and political issues,
- are able to communicate effectively to a wide range of audiences,
- exhibit team loyalty and have the ability and confidence to be a leader in industry, and
- are able to undertake postgraduate level study in engineering with minimum supervision.

WHAT WILL I BE EXPECTED TO ACHIEVE?

This programme has been developed in accordance with the QAA Subject Benchmark for Engineering. Learning outcomes which must be delivered by MEng Programmes, accredited by the Joint Board of Moderators (JBM) as meeting the educational requirements for registration as a Chartered Civil Engineer, are defined in general terms in the 4th edition of the Accreditation of Higher Education Programmes (AHEP), published at www.engc.org.uk. The programme learning outcomes listed below are cross-referenced to these mandated AHEP4 learning outcomes as numbered in Section 4 of the Guidelines for Degree Programmes (available at https://www.jbm.org.uk/media/hdojdcyf/guidelines-for-developing-degree-programmes_ahep4.pdf).

On successful completion of this programme, you will be expected to be able to:

Knowledge and understanding:

- Apply a knowledge of mathematics, statistics, natural science and engineering principles to the solution of complex problems. Much of the knowledge will be at the forefront of the particular subject of study and informed by a critical awareness of new developments and the wider context of engineering. (M1).
- Formulate and analyse complex problems to reach substantiated conclusions. This will involve evaluating available data using first principles of mathematics, statistics, natural science and engineering principles, and using engineering judgment to work with information that may be uncertain or incomplete, discussing the limitations of the techniques employed (M2).
- Select and apply appropriate computational and analytical techniques to model complex problems, recognising the limitations of the techniques employed and selecting and evaluating critically technical information and other information resources (M3, M4)
• Design solutions for complex integrated problems that evidence some originality and meet a combination of societal, user, business and customer needs as appropriate. This will involve consideration of applicable health and safety, diversity, inclusion, cultural, societal, environmental and commercial matters, codes of practice and industry standard (M5, M6).
• Evaluate the environmental and societal impact of solutions to complex problems (to include the entire lifecycle of a product or process) using holistic risk management processes, and minimise adverse impacts identifying and analysing ethical concerns informed by professional codes of conduct (M7, M8, M9, M10).
• Adopt an inclusive approach to civil engineering practice and recognise the responsibilities, benefits and importance of supporting equality, diversity and inclusion (M11).
• Use practical laboratory and workshop skills to investigate complex problems selecting and applying appropriate materials, equipment, engineering technologies and processes, recognising their limitations (M12, M13).
• Discuss the role of quality management systems and continuous improvement in the context of complex problems, and apply knowledge of civil engineering management principles, commercial context, and relevant legal matters (M14, M15).
• Evaluate effectiveness of own and team performance (M16).
• Plan and record self-learning and development as the foundation for lifelong learning/CPD (M18).

Skills:
• Tackle confidently unfamiliar engineering problems (M18).
• Gather, integrate and evaluate information from various sources including technical literature (M4).
• Break down a problem into a series of engineering tasks to be solved under a set of multi-disciplinary constraints (M5).
• Communicate effectively in technical and non-technical languages, written, oral and graphical forms to individuals and large audiences (M17).
• Be proficient with computational tools and communications systems (M3, M17).
• Use laboratory equipment for data measurement, processing, interpreting and analysis (M3, M13).
• Use laboratory equipment to produce or modify an engineering component (M12).
• Be proficient with analytical, computational and experimental techniques (including assessing the limitations of the results obtained), coupled with experience and decision-making, to solve engineering problems (M2, M3).
• Apply initiative, creativity and innovation to design, construct and test a system, component or process to meet specifications (M5).
• Evaluate designs, processes or products and make improvements, taking into consideration associated commercial risks, societal and environmental impact (M7, M9, M10).
• Work with technical uncertainty (M2).
• Plan for and manage time/cost/quality of an engineering project and, where necessary, use theory or experimental research to mitigate deficiencies, including adjusting plans to changing circumstances and controlling such adjustments (M7, M9, M10, M14).
• Function effectively as an individual, and as a member or leader of a team in which is able to communicate proficiently, willing to take the lead in difficult situations.
Be proficient in the application of analytical and computational techniques specifically to the analysis and design of different civil and infrastructure engineering systems (M2, M3).

Values and attitudes:
- Put the needs of the team ahead of one’s own needs (M16).
- Willingly take on the professional and ethical responsibilities of engineers in society (M8); commit to continuous improvement to enhance professional skills and benefit society (M18).
- Value the impact of civil engineering to society and to the global economy while recognising the need for civil engineering industry to contribute in a sustainable way (M7).
- Recognise that there is only one type of engineer, a person that tackles and solves problems, independently of gender, religion or race. Our graduates will be aware of the social and moral importance of equality and diversity, and of promoting inclusion (M11).

HOW WILL I LEARN?
Contact hours are made up of: lectures, which direct you towards the most important topics in the field and which allow discussion and clarification of areas of uncertainty with expert staff; tutorials where staff are on hand to help with problem-solving exercises; laboratory and workshop classes where practical situations and methods are encountered; and research or design/build projects, both individually and in groups, where personal skills, teamwork, creativity and critical thinking are developed and where knowledge built up elsewhere in the programme is integrated and developed. Site visits and field courses are used to place taught sessions in the context of real-world industries or products. Residential field courses allow you to undertake longer practical sessions in geology outside in the field.

The majority of learning in Higher Education is typically conducted through private study. Engineering is a practical discipline which benefits from significant supervised study, but it cannot be learnt through lectures alone. In Programme Stages 1 and 2 there is a higher proportion of supervised study (compared with Programme Stages 3 and 4), with typically 20-24 hours of contact timetabled each week. These supervised contact hours are designed to assist and to focus your private study. Teaching involves a combination of theoretical, experimental and computational study. Our approach is to encourage critical thinking and foster your curiosity. By the time that you reach Programme Stage 3, the tutorial and practical elements are managed more by you, especially in relation to your individual project work. The remaining hours of private study each week are essential to the achievement of the learning outcomes and are guided using both formative and summative coursework tasks set during the academic year.

In Programme Stage 4 the MEng Project gives you an opportunity to work independently, under the guidance of a member of staff, to undertake research into a topic that you may not have covered in taught material. You will plan and conduct the project using experimental and/or computational methods and critically assess the findings in the context of a review of existing work.

Your private study is also supported by the use of Moodle, City’s Online Learning Environment. This provides online access to module content, feedback, guidance on
WHAT TYPES OF ASSESSMENT AND FEEDBACK CAN I EXPECT?

Assessment and Assessment Criteria
The Programme is subdivided into Programme Stages (years of study) and each Programme Stage into modules (coherent groupings of syllabus topics addressing particular Learning Outcome types). Each module in the programme may have one or more assessment components of differing types. Assessment components may involve more than one assessment task (e.g. they may be an aggregate of different coursework marks or multiple examination papers). Modules that contain multiple assessment components (either coursework or exam) for which individual minimum pass marks are required are specified in the relevant module specifications.

Part of the modules will have an examination component as well as a coursework (continuous assessment) component. The split between examination and coursework assessment is included in the corresponding module specifications. Many skills need to be honed by practice: to this end formative assessments, may be organised within each module with appropriate and timely feedback mechanisms.

Examinations are used because they provide a controlled environment in which to assess knowledge and understanding and problem-solving skills. The time pressure and lack of prior warning about specific issues to be tackled is representative of real-world situations faced by practicing engineers. Coursework assessments vary from paper assignments (which may be similar to examinations but with longer time scales and with access permitted to information sources) to the assessment of practical skills which cannot be done in the exam hall. For example, communication skills (e.g. presentations, drawings and written reports), personal skills (such as team work or leadership), planning and design (both software and hardware), data analysis, critical review of information and the use of laboratory apparatus for measurement of properties and modelling of behaviour are usually assessed by means of coursework tasks.

Often coursework tasks may be set which are not to be assessed but which are valuable as a learning experience. This is known as formative coursework and is often the key to improving grades on assessed or summative coursework. You will receive feedback from all coursework assessments, both formative and summative, to enable you to develop and enhance your assessment performance. Real-life design projects are proposed in every stage of the Civil and Infrastructure Engineering program to offer a unique project-based learning approach with a significant industrial input.

Assessment Criteria are descriptions, based on the intended learning outcomes, of the skills, knowledge or attitudes that you need to demonstrate in order to complete an assessment successfully, providing a mechanism by which the quality of an assessment can be measured. Grade-Related Criteria are descriptions of the level of skills, knowledge or attributes that you need to demonstrate in order achieve a certain grade or mark in an assessment, providing a mechanism by which the quality of an assessment can be measured and placed within the overall set of marks. Assessment Criteria and Grade-Related Criteria will be made available to you to support you in completing assessments. These may be provided in programme handbooks, module specifications, on the virtual learning environment or attached to a specific assessment task.
Feedback on assessment
Feedback will be provided in line with our Assessment and Feedback Policy. In particular, you will normally be provided with feedback within three weeks of the submission deadline or assessment date. This may be written (on the hard copies and online) or oral (in class), specific to you or generally applicable, and would normally include a provisional grade or mark. If the coursework submitted is a laboratory report, then your work will not be returned until three weeks after the last report has been submitted. Laboratories are undertaken by groups of you in rotation over periods of many weeks and consequently the last group of you may complete the laboratory and submit the report many weeks after the first group.

For end-of-module examinations or an equivalent significant task (e.g. an end-of-module project), a generic feedback will normally be provided within four weeks of the last day of exam period. The timescale for feedback on final year projects or dissertations may be longer and starts from the date of the final presentation of the project. The full policy can be found at: https://www.city.ac.uk/__data/assets/pdf_file/0009/452565/Assessment-and-Feedback-Policy...pdf

Assessment Regulations
In order to pass your programme, you should complete successfully (or be exempted from) the relevant modules and assessments and will therefore acquire the required number of credits. You also need to pass each preceding Programme Stage of your Programme in order to progress to the following Programme Stage.

Your overall aggregate mark will be calculated by combining the aggregate marks from Programme Stages 1, 2, 3 and 4 in the ratio 1:2:3:4.

The pass mark for each module is 40%, except for Level-7 modules where the pass mark is 50%. In some modules there will be a requirement to pass individual components of the module (where the pass mark for these components will also be 40%, or 50% for Level-7 modules). Details of which assessment components need to be passed individually is provided in the Module Specification.

If you fail an assessment component or a module, the following will apply.

(1) Compensation: where, if you fail no more than one sixth of the total credits at first or resit attempt, you may be allowed compensation if

- compensation is permitted for the module involved (see the “What will I study” Section of the Programme Specification), and
- it can be demonstrated that you have satisfied the Learning Outcomes of the modules in the Programme Stage, and
- a minimum overall mark of at least 30% has been achieved in the module to be compensated (40% for Level 7 modules), and
- an aggregate mark of at least 40% (50% for Programme Stage 4) has been achieved for the Programme Stage under consideration.

Where you are eligible for compensation at the first attempt, this will be applied in the first instance rather than offering a resit opportunity.
If you receive a compensated pass in a module then you will be awarded the full credits for that module. The original component marks will be retained in the record of marks and your original module mark will be used for the purpose of your Award calculation.

Note that the total amount of compensated credits cannot exceed 30 during your whole study degree.

(2) Resit: Where you are not eligible for compensation at the first attempt, you will normally be offered one resit attempt.

If you are successful in the resit, you will be awarded the full credit for that module. The mark for each assessment component that is subject to a resit will be capped at the pass mark for the module. This capped mark will be used in the calculation of final module mark together with the original marks for the components that you passed at first attempt.

If you do not meet the pass requirements for a module and do not complete your resit by the date specified, you will not progress to the next Programme Stage and the Assessment Board will require you to be withdrawn from the Programme.

If you fail to meet the requirements for a particular Programme Stage or the Programme, the Assessment Board will consider whether you are eligible for an Exit Award as per the tables shown below.

If you would like further information about the way in which assessment works at City, please see the full version of the Assessment Regulations at: https://www.city.ac.uk/__data/assets/pdf_file/0007/453652/s19.pdf

WHAT AWARD CAN I GET?

Integrated Masters degree with honours in Civil and Infrastructure Engineering

<table>
<thead>
<tr>
<th>Programme Stage</th>
<th>HE Level</th>
<th>Credits</th>
<th>Weighting %</th>
<th>Class</th>
<th>% Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>120</td>
<td>10</td>
<td>I</td>
<td>70</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>120</td>
<td>20</td>
<td>II upper division</td>
<td>60</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>120</td>
<td>30</td>
<td>II lower division</td>
<td>50</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>120</td>
<td>40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bachelor’s degree with honours in Civil and Infrastructure Engineering

<table>
<thead>
<tr>
<th>Programme</th>
<th>HE</th>
<th>Credits</th>
<th>Weighting %</th>
<th>Class</th>
<th>% Required</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ordinary degree in Civil and Infrastructure Engineering

<table>
<thead>
<tr>
<th>Stage</th>
<th>Level</th>
<th>Credits</th>
<th>Weighting %</th>
<th>Class % Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>120</td>
<td>10</td>
<td>With Distinction 70</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>120</td>
<td>30</td>
<td>With Merit 60</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>120</td>
<td>60</td>
<td>Without Classification 40</td>
</tr>
</tbody>
</table>

Diploma of Higher Education in Civil and Infrastructure Engineering

<table>
<thead>
<tr>
<th>Programme Stage</th>
<th>HE Level</th>
<th>Credits</th>
<th>Weighting %</th>
<th>Class % Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>120</td>
<td>25</td>
<td>With Distinction 70</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>120</td>
<td>75</td>
<td>With Merit 60</td>
</tr>
</tbody>
</table>

Certificate of Higher Education in Engineering

<table>
<thead>
<tr>
<th>Programme Stage</th>
<th>HE Level</th>
<th>Credits</th>
<th>Weighting %</th>
<th>Class % Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>120</td>
<td>100</td>
<td>With Distinction 70</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>With Merit 60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Without Classification 40</td>
</tr>
</tbody>
</table>
WHAT WILL I STUDY?

Programme Stage 1

Programme Stage 1 comprises eight core Level-4 modules, totaling 120 credits. To pass Stage 1 you must obtain all 120 credits, as specified in the Programme Scheme.

<table>
<thead>
<tr>
<th>Module Title</th>
<th>SITS Code</th>
<th>Module Credits</th>
<th>Core or Elective</th>
<th>Can module be compensated?</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Engineering in Society - Social responsibility</td>
<td></td>
<td>15</td>
<td>Core</td>
<td>No</td>
<td>4</td>
</tr>
<tr>
<td>Engineering Design 1</td>
<td></td>
<td>15</td>
<td>Core</td>
<td>No</td>
<td>4</td>
</tr>
<tr>
<td>Introduction to Mechanics of materials and manufacturing</td>
<td></td>
<td>15</td>
<td>Core</td>
<td>No</td>
<td>4</td>
</tr>
<tr>
<td>Electronics - including circuits, digital and analog electronics</td>
<td></td>
<td>15</td>
<td>Core</td>
<td>No</td>
<td>4</td>
</tr>
<tr>
<td>Introduction to programming</td>
<td></td>
<td>15</td>
<td>Core</td>
<td>No</td>
<td>4</td>
</tr>
<tr>
<td>Engineering Science</td>
<td></td>
<td>15</td>
<td>Core</td>
<td>No</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics - I</td>
<td></td>
<td>15</td>
<td>Core</td>
<td>No</td>
<td>4</td>
</tr>
<tr>
<td>Introduction to Thermodynamics and Fluid Mechanics</td>
<td></td>
<td>15</td>
<td>Core</td>
<td>No</td>
<td>4</td>
</tr>
</tbody>
</table>

Programme Stage 2

Programme Stage 2 comprises eight core Level-5 modules, totaling 120 credits. To pass Programme Stage 2 you must obtain all 120 credits, as specified in the Programme Scheme.

If you wish to gain practical experience you have the option of spending a year on paid industrial placement between Programme Stages 2 and 3. You also have the option to split the placement over two periods in the summer between the years of study.

<table>
<thead>
<tr>
<th>Module Title</th>
<th>SITS Code</th>
<th>Module Credits</th>
<th>Core or Elective</th>
<th>Can module be compensated?</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Engineer in Society: Sustainability and Circular Economy</td>
<td></td>
<td>15</td>
<td>Core</td>
<td>No</td>
<td>5</td>
</tr>
</tbody>
</table>
To continue to Programme Stage 3 of the MEng Programme, you must have achieved a module average of at least 50% at the end of Programme Stage 2. If you fail to meet the requirement to progress to MEng Programme Stage 3, but pass all modules in Programme Stage 2, then you will be allowed to progress to Programme Stage 3 of the BEng Programme.

Programme Stage 3

Programme Stage 3 comprises seven core Level-6 modules, totaling 120 credits. To pass Programme Stage 3 you must obtain all 120 credits, as specified in the Programme Scheme.

If you wish to gain practical experience you have the option of spending a year on paid industrial placement between Programme Stages 3 and 4, if not taken already between Programme Stages 2 and 3.

<table>
<thead>
<tr>
<th>Module Title</th>
<th>SITS Code</th>
<th>Module Credits</th>
<th>Core or Elective</th>
<th>Can module be compensated?</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual project</td>
<td>30</td>
<td>Core</td>
<td>No</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>The Engineer in society: Infrastructure for Net Zero</td>
<td>15</td>
<td>Core</td>
<td>Yes</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Finite Element Analysis of Structures</td>
<td>15</td>
<td>Core</td>
<td>Yes</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Geotechnical Engineering</td>
<td>15</td>
<td>Core</td>
<td>Yes</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Design of Urban Infrastructure</td>
<td>15</td>
<td>Core</td>
<td>Yes</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Hydraulics and Marine Infrastructure</td>
<td>15</td>
<td>Core</td>
<td>Yes</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Construction Management and BIM</td>
<td>15</td>
<td>Core</td>
<td>Yes</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Having exhausted all re-sit opportunities, if you fail to progress to MEng Programme Stage 4, then you will be transferred to the BEng programme and considered for the award of a BEng (Hons) Degree.
Programme Stage 4

Programme Stage 4 comprises five compulsory Level-7 modules, totaling 90 credits, and two elective Level-7 modules of 15 credits each. To pass the Programme Stage 4 you must obtain 120 credits, as specified in the Programme Scheme.

<table>
<thead>
<tr>
<th>Module Title</th>
<th>SITS Code</th>
<th>Module Credits</th>
<th>Core or Elective</th>
<th>Can module be compensated?</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design project (group): Integrated Infrastructure Project</td>
<td>30</td>
<td>Core</td>
<td>No</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>The Engineer in Society: Infrastructure Resilience</td>
<td>15</td>
<td>Core</td>
<td>Yes</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Energy Infrastructure and Sustainability</td>
<td>15</td>
<td>Core</td>
<td>Yes</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Structural Dynamics and Stability</td>
<td>15</td>
<td>Core</td>
<td>Yes</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Analysis of Geotechnical Infrastructure</td>
<td>15</td>
<td>Core</td>
<td>Yes</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Computational Fluid Dynamics</td>
<td>15</td>
<td>Elective</td>
<td>Yes</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Energy in the Built Environment</td>
<td>15</td>
<td>Elective</td>
<td>Yes</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Information Management and BIM in Construction</td>
<td>EPM935a</td>
<td>15</td>
<td>Elective</td>
<td>Yes</td>
<td>7</td>
</tr>
<tr>
<td>Introduction to Temporary Works - Online</td>
<td>EPM611</td>
<td>15</td>
<td>Elective</td>
<td>Yes</td>
<td>7</td>
</tr>
<tr>
<td>Project Funding and Finance</td>
<td>EPM932</td>
<td>15</td>
<td>Elective</td>
<td>Yes</td>
<td>7</td>
</tr>
<tr>
<td>Design of Concrete Structures</td>
<td>EPM711</td>
<td>15</td>
<td>Elective</td>
<td>Yes</td>
<td>7</td>
</tr>
<tr>
<td>Design of Steel and Composite Structures</td>
<td>EPM712</td>
<td>15</td>
<td>Elective</td>
<td>Yes</td>
<td>7</td>
</tr>
<tr>
<td>Bridge Engineering</td>
<td>EMP715</td>
<td>15</td>
<td>Elective</td>
<td>Yes</td>
<td>7</td>
</tr>
<tr>
<td>Earthquake Analysis of Structures</td>
<td>EPM720</td>
<td>15</td>
<td>Elective</td>
<td>Yes</td>
<td>7</td>
</tr>
</tbody>
</table>

TO WHAT KIND OF CAREER MIGHT I GO ON?

Most graduates choose to enter the civil engineering profession either with consultants or contractors. Recent graduates have joined leading design consultants such as AECOM, Atkins, Building Design Consultants, London Bridge Associates, Mott MacDonald, Arup and Ramboll or contracting engineering practices in the UK such as Balfour Beatty Engineering, Jacobs Engineering and Skanska. Graduates also join companies overseas.

However, beyond civil engineering, this degree equips you with the required technical
expertise, initiative and management skills to be able to face modern challenges in any number of branches of the engineering industry. Your creativity and innovation in design will serve you well in the broad profession.

The Centre for Career & Skills Development provides a service to current undergraduates and postgraduates, as well as recent graduates of the University. Their aim is to provide you with advice, information and skills that you need to make a smooth transition into the world of professional engineering. If you would like further information on the careers support available at City, please go to: http://www.city.ac.uk/careers

WHAT STUDY ABROAD OPTIONS ARE AVAILABLE?

At present these options are not available; they remain under development.

WHAT PLACEMENT OPPORTUNITIES ARE AVAILABLE?

If you wish to take a professional placement, then you will need to register accordingly prior to the start of your placement. We strongly encourage you to undertake a 12-month placement or 6–8-week Summer Internship, as you will benefit greatly from the experience; providing you with a distinct advantage when you seek employment upon graduation. SMCSE’s Professional Liaison Unit (PLU) collaborates with the University Career and Skills Development Service to deliver a series of Professional Development workshops to prepare you for searching for and applying for a work placement. The PLU is in regular contact with companies and other organisations concerning the availability of training opportunities and will advise you on making applications.

You are welcome to make your own applications but you will be asked to discuss these with the PLU’s Work Based Learning Advisor. Support is provided in the SMCSE Placement & Internships Resource Centre module on Moodle.

If you are on an approved Professional Placement then your experience will be graded on the basis of (i) reports from two visits made by the Visiting Tutor (a member of academic staff) familiar to the subject and (ii) your final report. Informal contact is maintained throughout the 12 months, as necessary. Although your placement is reported on the degree transcript, the grading does not contribute to the final degree result.

Placement guidelines are issued to you and your employer at the commencement of training, and these include a placement health and safety booklet. The guidelines also include a section on workplace learning. Early in the placement year, you are required to produce a placement plan in conjunction with your Workplace Supervisor and the Visiting Tutor.

WILL I GET ANY PROFESSIONAL RECOGNITION?

Accrediting Body: Joint Board of Moderators (Institution of Civil Engineers, Institution of Structural Engineers, Institute of Highway Engineers, The Chartered Institution of
Highways and Transportation)

Nature of Accreditation
Our current Aeronautical Engineering degrees are accredited by the above institutions, providing a path for students on those programmes to gain Chartered Engineering status. This programme has been designed to satisfy the above institutions’ accreditation criteria and an application for accreditation will be made in due course. We have every expectation that these degrees will similarly receive full accreditation.

HOW DO I ENTER THE PROGRAMME?

The following entrance requirements typically apply.

UCAS tariff points
128.

A-levels
ABB; including A-Level Mathematics. You are also required to have passed GCSE English Language at grade 4, or higher.

IB
31 points with 'Higher Level Mathematics at grade 6' OR 'Standard Level Mathematics at grade 7 AND Higher-Level Physics/Biology/Chemistry at grade 6'.

BTEC
BTEC (Level 3 Nationals only).
D*DD in Engineering (RQF) (First teaching Sept 2016) with minimum grade D in units 1 - Engineering Principles, 7 - Calculus to Solve Engineering Problems and 8 - Further Engineering Mathematics. Candidates must also have a minimum of grade 6 in GCSE Mathematics and Science/Physics.

T-Level
in Design, Surveying and Construction. Must have an overall “Distinction” with at least B in the core. Must have “Distinction” in the Occupational specialism of Civil Engineering.

English language requirements
For overseas candidates, an IELTS score of 6.0 (with a minimum of 5.5 in all components) is required. TOEFL is not accepted as evidence of English language ability for students that require a Confirmation of Acceptance for Studies.

Entry via Foundation Course

You will be offered a place on the MEng (Hons) degree in Civil and Infrastructure Engineering should you both (i) successfully satisfy the City University London interview panel and (ii) obtain an overall grade of at least 75% on an Engineering Foundation programme at: Westminster-Kingsway College, INTO City University London International or Kaplan International College.
RPL/RPEL
Direct entry into Programme Stage 2 may be considered for candidates who have successfully completed the first year of a similar accredited MEng or BEng degree.

Scholarships
Undergraduate students are considered for a wide range of awards (scholarships, bursaries and prizes) throughout their studies in the School. These (internally and externally funded) awards range from £500-£9000 and they are based on a combination of academic merit and hardship. A number of these awards are also available to international students. Further information can be found at: http://www.city.ac.uk/study/undergraduate/funding-and-financial-support/scholarships-and-bursaries