People
  1. Students
  2. Alumni
  3. Honorary Graduates
  4. Academic Experts
People

Contact Information

Contact

Visit Yang-Hui He

E233, Drysdale Building

null

Postal Address

City, University of London
Northampton Square
London
EC1V 0HB
United Kingdom

About

Overview

Professor Yang-Hui He studied at Princeton University, where he received his Bachelor of Arts in Physics, with a Certificate in Applied Mathematics and a Certificate in Engineering, Summa cum Laude. He then obtained a Certificate in Advanced Mathematics (Tripos) at the University of Cambridge, with Distinction. He went on to receive his PhD in theoretical and mathematical physics from MIT. Yang continued with postdoctoral work in the University of Pennsylvania before joining Merton College, University of Oxford as the FitzJames Fellow in Mathematics and then the UK STFC Advanced Fellow in theoretical physics.

Yang joined City in 2010 as Reader in Mathematics. He is currently Professor of Mathematics and also holds the Chang-Jiang Chair Professorship and Qian-Ren Scholarship at NanKai University awarded by the Chinese Ministry of Education. He also remains a Tutor at Merton College, Oxford where he taught since 2005.

Qualifications

PhD Theoretical Physics,
MIT, 2002

MA Mathematics (Tripos, Distinction),
University of Cambridge, 1997

BA Physics, (Highest Honours, with Certificates in Maths and in Eng. Physics),
Princeton University, 1996

Employment

2014 - Professor of Mathematics, City University, London
2010 - 2013 City University London, Reader in Mathematics & STFC Advanced Fellow
2005 - 2010 Merton College & Dept of Theoretical Physics, Oxford University, Fellow
2002 - 2005 University of Pennsylvania, Research Associate

Other appointments

2010 - to date Nankai University, Chang-Jiang Chair Professor of Physics
2005 - to date Merton College, Oxford University, Tutor in Mathematics

Research

Yang is a mathematical physicist working on various interfaces between geometry and theoretical high energy physics. He is particularly interested in aspects of algebraic geometry in application to, and interacting with, gauge theory as well as string theory, such as Calabi-Yau manifolds, holographic correspondences and string phenomenology. He also has interests in the dialogue between number theory, graph representation theory and gauge theories.

Publications

  1. Gao, P., He, Y.-.H. and Yau, S.-.T. (2015). Extremal Bundles on Calabi-Yau Threefolds. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 336(3), pp. 1167–1200. doi:10.1007/s00220-014-2271-y.

Book

  1. He, Y.-.H., Candelas, P., Hanany, A., Lukas, A. and Ovrut, B. (2012). Computational Algebraic Geometry in String and Gauge Theory.

Chapters (4)

  1. He, Y.-.H. (2012). Bipartita: Physics, Geometry and Number Theory. Symmetries and Groups in Contemporary Physics (pp. 321–326). Singapore: World Scientific Publishing. ISBN 978-981-4518-54-3.
  2. Ashmore, A. and He, Y.-.H. (2011). Calabi-Yau Three-folds: Poincare Polynomials and Fractals. Strings, Gauge Fields, and the Geometry Behind: The Legacy of Maximilian Kreuzer (pp. 173–186). ISBN 978-981-4412-54-4.
  3. He, Y., Feng, B. and Hanany, A. (2004). Horizons in world physics. In Lynch, T.V. (Ed.), Horizons in world physics Nova Science Pub Inc. ISBN 978-1-59454-063-9.
  4. He, Y., Feng, B. and Hanany, A. (2000). Z-D Brane Box Models and Non-Chiral Dihedral Quivers. In Golfand, Y. and Shifman, M.A. (Eds.), The many faces of the superworld (pp. 280–306). World Scientific Pub Co Inc. ISBN 978-981-02-4206-0.

Journal Articles (113)

  1. He, Y.-.H., Jejjala, V. and Pontiggia, L. (2017). Patterns in Calabi-Yau Distributions. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 354(2), pp. 477–524. doi:10.1007/s00220-017-2907-9.
  2. Franco, S., He, Y.-.H., Sun, C. and Xiao, Y. (2017). A comprehensive survey of brane tilings. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 32(23-24) . doi:10.1142/S0217751X17501421.
  3. He, Y.-.H., Jejjala, V. and Minic, D. (2016). From Veneziano to Riemann: A string theory statement of the Riemann hypothesis. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 31(36) . doi:10.1142/S0217751X16502018.
  4. He, Y.-.H., Jejjala, V., Matti, C. and Nelson, B.D. (2016). Testing R-parity with geometry. JOURNAL OF HIGH ENERGY PHYSICS, (3) . doi:10.1007/JHEP03(2016)079.
  5. Huang, R., Rao, J., Feng, B. and He, Y.-.H. (2015). An algebraic approach to the scattering equations. JOURNAL OF HIGH ENERGY PHYSICS, (12) . doi:10.1007/JHEP12(2015)056.
  6. He, Y.-.H. and Read, J. (2015). Hecke Groups, Dessins d’Enfants and the Archimedean Solids. Frontiers in Physics, 3 .
  7. He, Y.-.H., Jejjala, V., Matti, C., Nelson, B.D. and Stillman, M. (2015). The Geometry of Generations. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 339(1), pp. 149–190. doi:10.1007/s00220-015-2416-7.
  8. He, Y.-.H. and Read, J. (2015). Dessins d'enfants in N=2 generalised quiver theories. JOURNAL OF HIGH ENERGY PHYSICS, (8) . doi:10.1007/JHEP07(2015)085.
  9. Zhou, D., Xiao, Y. and He, Y.-.H. (2015). Seiberg duality, quiver gauge theories, and Ihara's zeta function. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 30(18-19) . doi:10.1142/S0217751X15501183.
  10. Gao, P., He, Y.-.H. and Yau, S.-.T. (2015). Extremal Bundles on Calabi-Yau Threefolds. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 336(3), pp. 1167–1200. doi:10.1007/s00220-014-2271-y.
  11. Bose, S., Gundry, J. and He, Y.-.H. (2015). Gauge theories and dessins d'enfants: beyond the torus. JOURNAL OF HIGH ENERGY PHYSICS, (1) . doi:10.1007/JHEP01(2015)135.
  12. Altman, R., Gray, J., He, Y.-.H., Jejjala, V. and Nelson, B.D. (2015). A Calabi-Yau Database: Threefolds Constructed from the Kreuzer-Skarke List. The Journal of High Energy Physics pp. 158–158. doi:10.1007/JHEP02(2015)158.
  13. He, Y.-.H., Matti, C. and Sun, C. (2014). The scattering variety. JOURNAL OF HIGH ENERGY PHYSICS, (10) . doi:10.1007/JHEP10(2014)135.
  14. He, Y.-.H., Jejjala, V., Matti, C. and Nelson, B.D. (2014). Veronese geometry and the electroweak vacuum moduli space. PHYSICS LETTERS B, 736, pp. 20–25. doi:10.1016/j.physletb.2014.06.072.
  15. He, Y.-.H., Lee, S.-.J., Lukas, A. and Sun, C. (2014). Heterotic model building: 16 special manifolds. JOURNAL OF HIGH ENERGY PHYSICS, (6) . doi:10.1007/JHEP06(2014)077.
  16. He, Y.-.H. and van Loon, M. (2014). Gauge theories, tessellations & Riemann surfaces. JOURNAL OF HIGH ENERGY PHYSICS, (6) . doi:10.1007/JHEP06(2014)053.
  17. Duncan, M., Gu, W., He, Y.-.H. and Zhou, D. (2014). The statistics of vacuum geometry. JOURNAL OF HIGH ENERGY PHYSICS, (6) . doi:10.1007/JHEP06(2014)042.
  18. He, Y.-.H. and Mckay, J. (2014). Eta products, BPS states and K3 surfaces. JOURNAL OF HIGH ENERGY PHYSICS, (1) . doi:10.1007/JHEP01(2014)113.
  19. Hanany, A., He, Y.-.H., Sun, C. and Sypsas, S. (2013). Superconformal block quivers, duality trees and Diophantine equations. JOURNAL OF HIGH ENERGY PHYSICS, (11) . doi:10.1007/JHEP11(2013)017.
  20. Hauenstein, J., He, Y.-.H. and Mehta, D. (2013). Numerical elimination and moduli space of vacua. JOURNAL OF HIGH ENERGY PHYSICS, (9) . doi:10.1007/JHEP09(2013)083.
  21. He, Y.-.H. and McKay, J. (2013). N=2 Gauge Theories: Congruence Subgroups, Coset Graphs and Modular Surfaces. J.Math.Phys., 54, pp. 012301–012301. doi:10.1063/1.4772976.
  22. He, Y.-.H., Mehta, D., Niemerg, M., Rummel, M. and Valeanu, A. (2013). Exploring the Potential Energy Landscape Over a Large Parameter-Space. JHEP, 1307, pp. 050–050. doi:10.1007/JHEP07(2013)050.
  23. He, Y.-.H., McKay, J. and Read, J. (2013). Modular Subgroups, Dessins d’Enfants and Elliptic K3 Surfaces. LMS J.Comp.Math., 16, pp. 271–318. doi:10.1112/S1461157013000119.
  24. He, Y.-.H. (2013). Calabi-Yau Geometries: Algorithms, Databases, and Physics. Int.J.Mod.Phys., A28, pp. 1330032–1330032. doi:10.1142/S0217751X13300329.
  25. Braun, V., He, Y.-.H. and Ovrut, B.A. (2013). Supersymmetric Hidden Sectors for Heterotic Standard Models. JHEP, 1309, pp. 008–008. doi:10.1007/JHEP09(2013)008.
  26. He, Y.-.H. and Lee, S.-.J. (2012). Quiver structure of heterotic moduli. JOURNAL OF HIGH ENERGY PHYSICS, (11) . doi:10.1007/JHEP11(2012)119.
  27. Gray, J., He, Y.-.H., Jejjala, V., Jurke, B., Nelson, B. and Simon, J. (2012). Necessary conditions on Calabi-Yau manifolds for large volume vacua. PHYSICAL REVIEW D, 86(10) . doi:10.1103/PhysRevD.86.101901.
  28. Franco, S., Galloni, D. and He, Y.-.H. (2012). Towards the continuous limit of cluster integrable systems. JOURNAL OF HIGH ENERGY PHYSICS, (9) . doi:10.1007/JHEP09(2012)020.
  29. Mehta, D., He, Y.-.H. and Hauenstein, J.D. (2012). Numerical algebraic geometry: a new perspective on gauge and string theories. JOURNAL OF HIGH ENERGY PHYSICS, (7) . doi:10.1007/JHEP07(2012)018.
  30. He, Y.-.H., Jejjela, V. and Rodriguez-Gomez, D. (2012). Brane geometry and dimer models. JOURNAL OF HIGH ENERGY PHYSICS, (6) . doi:10.1007/JHEP06(2012)143.
  31. Hanany, A., He, Y.-.H., Jejjala, V., Pasukonis, J., Ramgoolam, S. and Rodriguez-Gomez, D. (2012). INVARIANTS OF TORIC SEIBERG DUALITY. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 27(1) . doi:10.1142/S0217751X12500029.
  32. He, Y.-.H., Kreuzer, M., Lee, S.-.J. and Lukas, A. (2011). Heterotic bundles on Calabi-Yau manifolds with small Picard number. JOURNAL OF HIGH ENERGY PHYSICS, (12) . doi:10.1007/JHEP12(2011)039.
  33. Hanany, A., He, Y.-.H., Jejjala, V., Pasukonis, J., Ramgoolam, S. and others, (2011). The Beta Ansatz: A Tale of Two Complex Structures. JHEP, 1106, pp. 056–056. doi:10.1007/JHEP06(2011)056.
  34. He, Y.-.H. (2011). Graph Zeta Function and Gauge Theories. JHEP, 1103, pp. 064–064. doi:10.1007/JHEP03(2011)064.
  35. He, Y.-.H. (2011). Polynomial Roots and Calabi-Yau Geometries. Adv.High Energy Phys., 2011, pp. 719672–719672. doi:10.1155/2011/719672.
  36. Hanany, A. and He, Y.-.H. (2011). Chern-Simons: Fano and Calabi-Yau. Adv.High Energy Phys., 2011, pp. 204576–204576. doi:10.1155/2011/204576.
  37. He, Y.H., Lee, S.J. and Lukas, A. (2010). Heterotic models from vector bundles on toric Calabi-Yau manifolds. Journal of High Energy Physics, 2010(5) . doi:10.1007/JHEP05(2010)071.
  38. Anderson, L.B., Gray, J., He, Y.H. and Lukas, A. (2010). Exploring positive monad bundles and a new heterotic standard model. Journal of High Energy Physics, 2010(2) . doi:10.1007/JHEP02(2010)054.
  39. He, Y.-.H., Jejjala, V. and Minic, D. (2010). On the Physics of the Riemann Zeros. . doi:10.1088/1742-6596/462/1/012036.
  40. He, Y.-.H. (2010). On Fields over Fields. .
  41. He, Y.-.H. (2010). An Algorithmic Approach to Heterotic String Phenomenology. Mod.Phys.Lett., A25, pp. 79–90. doi:10.1142/S0217732310032731.
  42. Benishti, N., He, Y.-.H. and Sparks, J. (2010). (Un)Higgsing the M2-brane. JHEP, 1001, pp. 067–067. doi:10.1007/JHEP01(2010)067.
  43. Hewlett, J. and He, Y.-.H. (2010). Probing the Space of Toric Quiver Theories. JHEP, 1003, pp. 007–007. doi:10.1007/JHEP03(2010)007.
  44. Anderson, L.B., Gray, J., Grayson, D., He, Y.-.H. and Lukas, A. (2010). Yukawa Couplings in Heterotic Compactification. Commun.Math.Phys., 297, pp. 95–127. doi:10.1007/s00220-010-1033-8.
  45. Gray, J., He, Y.-.H., Ilderton, A. and Lukas, A. (2009). STRINGVACUA: A Mathematica Package for Studying Vacuum Configurations in String Phenomenology. Comput.Phys.Commun., 180, pp. 107–119. doi:10.1016/j.cpc.2008.08.009.
  46. He, Y.-.H., Jejjala, V. and Minic, D. (2009). Eigenvalue Density, Li’s Positivity, and the Critical Strip. .
  47. Gabella, M., He, Y.-.H. and Lukas, A. (2008). An Abundance of Heterotic Vacua. JHEP, 0812, pp. 027–027. doi:10.1088/1126-6708/2008/12/027.
  48. Anderson, L.B., He, Y.-.H. and Lukas, A. (2008). Monad Bundles in Heterotic String Compactifications. JHEP, 0807, pp. 104–104. doi:10.1088/1126-6708/2008/07/104.
  49. Gray, J., Hanany, A., He, Y.-.H., Jejjala, V. and Mekareeya, N. (2008). SQCD: A Geometric Apercu. JHEP, 0805, pp. 099–099. doi:10.1088/1126-6708/2008/05/099.
  50. Forcella, D., Hanany, A., He, Y.-.H. and Zaffaroni, A. (2008). Mastering the Master Space. Lett.Math.Phys., 85, pp. 163–171. doi:10.1007/s11005-008-0255-6.
  51. Forcella, D., Hanany, A., He, Y.-.H. and Zaffaroni, A. (2008). The Master Space of N=1 Gauge Theories. JHEP, 0808, pp. 012–012. doi:10.1088/1126-6708/2008/08/012.
  52. Balasubramanian, V., Czech, B., He, Y.-.H., Larjo, K. and Simon, J. (2008). Typicality, Black Hole Microstates and Superconformal Field Theories. JHEP, 0803, pp. 008–008. doi:10.1088/1126-6708/2008/03/008.
  53. Candelas, P., de la Ossa, X., He, Y.-.H. and Szendroi, B. (2008). Triadophilia: A Special Corner in the Landscape. Adv.Theor.Math.Phys., 12, pp. 429–473. doi:10.4310/ATMP.2008.v12.n2.a6.
  54. Feng, B., He, Y.-.H., Kennaway, K.D. and Vafa, C. (2008). Dimer Models from Mirror Symmetry and Quivering Amoebae. Advances in Theoretical and Mathematical Physics, 12(3), pp. 489–545. doi:10.4310/ATMP.2008.v12.n3.a2.
  55. Hanany, A. and He, Y.-.H. (2008). M2-Branes and Quiver Chern-Simons: A Taxonomic Study. .
  56. He, Y.-.H. (2007). Vacuum Geometry and the Search for New Physics. eConf, C0706044, pp. 04–04.
  57. Gray, J., He, Y.-.H., Ilderton, A. and Lukas, A. (2007). A New Method for Finding Vacua in String Phenomenology. JHEP, 0707, pp. 023–023. doi:10.1088/1126-6708/2007/07/023.
  58. Anderson, L.B., He, Y.-.H. and Lukas, A. (2007). Heterotic Compactification, An Algorithmic Approach. JHEP, 0707, pp. 049–049. doi:10.1088/1126-6708/2007/07/049.
  59. Feng, B., Hanany, A. and He, Y.-.H. (2007). Counting gauge invariants: The Plethystic program. JHEP, 0703, pp. 090–090. doi:10.1088/1126-6708/2007/03/090.
  60. Benvenuti, S., Feng, B., Hanany, A. and He, Y.-.H. (2007). Counting BPS Operators in Gauge Theories: Quivers, Syzygies and Plethystics. JHEP, 0711, pp. 050–050. doi:10.1088/1126-6708/2007/11/050.
  61. Gray, J., He, Y.-.H. and Lukas, A. (2006). Algorithmic Algebraic Geometry and Flux Vacua. JHEP, 0609, pp. 031–031. doi:10.1088/1126-6708/2006/09/031.
  62. Gray, J., He, Y.-.H., Jejjala, V. and Nelson, B.D. (2006). Exploring the vacuum geometry of N=1 gauge theories. Nucl.Phys., B750, pp. 1–27. doi:10.1016/j.nuclphysb.2006.06.001.
  63. Braun, V., He, Y.-.H. and Ovrut, B.A. (2006). Stability of the minimal heterotic standard model bundle. JHEP, 0606, pp. 032–032. doi:10.1088/1126-6708/2006/06/032.
  64. Braun, V., He, Y.-.H. and Ovrut, B.A. (2006). Yukawa couplings in heterotic standard models. JHEP, 0604, pp. 019–019. doi:10.1088/1126-6708/2006/04/019.
  65. Braun, V., He, Y.-.H., Ovrut, B.A. and Pantev, T. (2006). The Exact MSSM spectrum from string theory. JHEP, 0605, pp. 043–043. doi:10.1088/1126-6708/2006/05/043.
  66. Gray, J., He, Y.-.H., Jejjala, V. and Nelson, B.D. (2006). Vacuum geometry and the search for new physics. Phys.Lett., B638, pp. 253–257. doi:10.1016/j.physletb.2006.05.026.
  67. Braun, V., He, Y.-.H., Ovrut, B.A. and Pantev, T. (2006). Moduli dependent mu-terms in a heterotic standard model. JHEP, 0603, pp. 006–006. doi:10.1088/1126-6708/2006/03/006.
  68. Braun, V., He, Y.-.H., Ovrut, B.A. and Pantev, T. (2006). Heterotic standard model moduli. JHEP, 0601, pp. 025–025. doi:10.1088/1126-6708/2006/01/025.
  69. Braun, V., He, Y.-.H., Ovrut, B.A. and Pantev, T. (2006). Vector bundle extensions, sheaf cohomology, and the heterotic standard model. Adv.Theor.Math.Phys., 10, pp. 4–4.
  70. Braun, V., He, Y.-.H., Ovrut, B.A. and Pantev, T. (2006). Vector bundle extensions, sheaf cohomology, and the heterotic standard model. Advances in Theoretical and Mathematical Physics, 10(4), pp. 525–589. doi:10.4310/ATMP.2006.v10.n4.a3.
  71. He, Y.-.H. (2005). GUT particle spectrum from heterotic compactification. Mod.Phys.Lett., A20, pp. 1483–1494. doi:10.1142/S0217732305017627.
  72. Braun, V., He, Y.-.H., Ovrut, B.A. and Pantev, T. (2005). A Standard model from the E(8) x E(8) heterotic superstring. JHEP, 0506, pp. 039–039. doi:10.1088/1126-6708/2005/06/039.
  73. Braun, V., He, Y.-.H., Ovrut, B.A. and Pantev, T. (2005). A Heterotic standard model. Phys.Lett., B618, pp. 252–258. doi:10.1016/j.physletb.2005.05.007.
  74. Donagi, R., He, Y.-.H., Ovrut, B.A. and Reinbacher, R. (2005). The Spectra of heterotic standard model vacua. JHEP, 0506, pp. 070–070. doi:10.1088/1126-6708/2005/06/070.
  75. Donagi, R., He, Y.-.H., Ovrut, B.A. and Reinbacher, R. (2005). Higgs doublets, split multiplets and heterotic SU(3)(C) x SU(2)(L) x U(1)(Y) spectra. Phys.Lett., B618, pp. 259–264. doi:10.1016/j.physletb.2005.05.004.
  76. Franco, S., He, Y.-.H., Herzog, C. and Walcher, J. (2004). Chaotic cascades for D-branes on singularities. pp. 305–309.
  77. He, Y.-.H. (2004). Lectures on D-branes, gauge theories and Calabi-Yau singularities. .
  78. Donagi, R., He, Y.-.H., Ovrut, B.A. and Reinbacher, R. (2004). The Particle spectrum of heterotic compactifications. JHEP, 0412, pp. 054–054. doi:10.1088/1126-6708/2004/12/054.
  79. Donagi, R., He, Y.-.H., Ovrut, B.A. and Reinbacher, R. (2004). Moduli dependent spectra of heterotic compactifications. Phys.Lett., B598, pp. 279–284. doi:10.1016/j.physletb.2004.08.010.
  80. Feng, B., He, Y.-.H. and Lam, F. (2004). On correspondences between toric singularities and (p,q) webs. Nucl.Phys., B701, pp. 334–356. doi:10.1016/j.nuclphysb.2004.08.048.
  81. Franco, S., He, Y.-.H., Herzog, C. and Walcher, J. (2004). Chaotic duality in string theory. Phys.Rev., D70, pp. 046006–046006. doi:10.1103/PhysRevD.70.046006.
  82. Franco, S., Hanany, A. and He, Y.-.H. (2004). A Trio of dualities: Walls, trees and cascades. Fortsch.Phys., 52, pp. 540–547. doi:10.1002/prop.200310142.
  83. He, Y.-.H., Ovrut, B.A. and Reinbacher, R. (2004). The Moduli of reducible vector bundles. JHEP, 0403, pp. 043–043. doi:10.1088/1126-6708/2004/03/043.
  84. He, Y.-.H. and Jejjala, V. (2003). Modular matrix models. .
  85. Franco, S., Hanany, A., He, Y.-.H. and Kazakopoulos, P. (2003). Duality walls, duality trees and fractional branes. .
  86. He, Y.-.H. (2003). Closed string tachyons, nonsupersymmetric orbifolds and generalized McKay correspondence. Adv.Theor.Math.Phys., 7, pp. 121–144. doi:10.4310/ATMP.2003.v7.n1.a5.
  87. Balasubramanian, V., de Boer, J., Feng, B., He, Y.-.H., Huang, M.-.X. and others, (2003). Multitrace superpotentials vs. matrix models. Commun.Math.Phys., 242, pp. 361–392.
  88. Feng, B. and He, Y.-.H. (2003). Seiberg duality in matrix models. 2. Phys.Lett., B562, pp. 339–346. doi:10.1016/S0370-2693(03)00597-5.
  89. He, Y.-.H., Schwarz, J.H., Spradlin, M. and Volovich, A. (2003). Explicit formulas for Neumann coefficients in the plane wave geometry. Phys.Rev., D67, pp. 086005–086005. doi:10.1103/PhysRevD.67.086005.
  90. He, Y.-.H. (2003). G(2) quivers. JHEP, 0302, pp. 023–023. doi:10.1088/1126-6708/2003/02/023.
  91. Feng, B., Franco, S., Hanany, A. and He, Y.-.H. (2003). UnHiggsing the del Pezzo. JHEP, 0308, pp. 058–058. doi:10.1088/1126-6708/2003/08/058.
  92. Feng, B., Hanany, A., He, Y.H. and Iqbal, A. (2003). Quiver theories, soliton spectra and Picard-Lefschetz transformations. JHEP, 0302, pp. 056–056. doi:10.1088/1126-6708/2003/02/056.
  93. He, Y.-.H. (2002). On algebraic singularities, finite graphs and D-brane gauge theories: A String theoretic perspective. .
  94. Feng, B., Franco, S., Hanany, A. and He, Y.-.H. (2002). Symmetries of toric duality. JHEP, 0212, pp. 076–076. doi:10.1088/1126-6708/2002/12/076.
  95. Feng, B., He, Y.-.H. and Moeller, N. (2002). Zeeman spectroscopy of the star algebra. JHEP, 0205, pp. 041–041. doi:10.1088/1126-6708/2002/05/041.
  96. Feng, B., He, Y.-.H. and Moeller, N. (2002). The Spectrum of the Neumann matrix with zero modes. JHEP, 0204, pp. 038–038. doi:10.1088/1126-6708/2002/04/038.
  97. Feng, B., Hanany, A., He, Y.-.H. and Prezas, N. (2002). Stepwise projection: toward brane setups for generic orbifold singularities. JHEP, 0201, pp. 040–040. doi:10.1088/1126-6708/2002/01/040.
  98. Feng, B., Hanany, A., He, Y.-.H. and Uranga, A.M. (2001). Toric duality as Seiberg duality and brane diamonds. JHEP, 0112, pp. 035–035. doi:10.1088/1126-6708/2001/12/035.
  99. Ellwood, I., Feng, B., He, Y.-.H. and Moeller, N. (2001). The Identity string field and the tachyon vacuum. JHEP, 0107, pp. 016–016. doi:10.1088/1126-6708/2001/07/016.
  100. Feng, B., Hanany, A. and He, Y.-.H. (2001). Phase structure of D-brane gauge theories and toric duality. JHEP, 0108, pp. 040–040. doi:10.1088/1126-6708/2001/08/040.
  101. Feng, B., He, Y.-.H., Karch, A. and Uranga, A.M. (2001). Orientifold dual for stuck NS5-branes. JHEP, 0106, pp. 065–065. doi:10.1088/1126-6708/2001/06/065.
  102. Feng, B., He, Y.-.H. and Moeller, N. (2001). Testing the uniqueness of the open bosonic string field theory vacuum. .
  103. Feng, B., Hanany, A., He, Y.-.H. and Prezas, N. (2001). Discrete torsion, covering groups and quiver diagrams. JHEP, 0104, pp. 037–037. doi:10.1088/1126-6708/2001/04/037.
  104. Feng, B., Hanany, A., He, Y.-.H. and Prezas, N. (2001). Discrete torsion, nonAbelian orbifolds and the schur multiplier. JHEP, 0101, pp. 033–033. doi:10.1088/1126-6708/2001/01/033.
  105. Feng, B., Hanany, A. and He, Y.-.H. (2001). D-brane gauge theories from toric singularities and toric duality. Nucl.Phys., B595, pp. 165–200. doi:10.1016/S0550-3213(00)00699-4.
  106. Hanany, A. and He, Y.-.H. (2001). A Monograph on the classification of the discrete subgroups of SU(4). JHEP, 0102, pp. 027–027. doi:10.1088/1126-6708/2001/02/027.
  107. Feng, B. and He, Y.-.H. (2000). An Observation on finite groups and WZW modular invariants. .
  108. He, Y.-.H. and Song, J.S. (2000). Of McKay correspondence, nonlinear sigma model and conformal field theory. Adv.Theor.Math.Phys., 4, pp. 747–790.
  109. He, Y.-.H. (1999). Some remarks on the finitude of quiver theories. In.J.Math.Math.Sci. .
  110. Feng, B., Hanany, A. and He, Y.-.H. (1999). Z - D-brane box models and nonchiral dihedral quivers. .
  111. Feng, B., Hanany, A. and He, Y.-.H. (1999). The Z(k) x D(k-prime) brane box model. JHEP, 9909, pp. 011–011. doi:10.1088/1126-6708/1999/09/011.
  112. Hanany, A. and He, Y.-.H. (1999). NonAbelian finite gauge theories. JHEP, 9902, pp. 013–013. doi:10.1088/1126-6708/1999/02/013.
  113. He, Y.-.H. and McKay, J. Moonshine and the Meaning of Life. Eureka .

Software

  1. He, Y., Gray, J., Ilderton, A. and Lukas, A. STRINGVACUA: A Mathematica Package for Studying Vacuum Configurations in String Phenomenology. Comput.Phys.Commun. 180 (2009) 107-119.

Other Activities

Editorial Activities (3)

  1. Editor in Chief, Journal of Modern Physics,.
  2. Lead guest Editor, Advances in High Energy Physics.
  3. Editor, The Scientific World Journal.

Keynote Lectures/Speeches (9)

  1. Quiver and D-Branes. Hong Kong (2002). HK Geometry Symposium
  2. Muss Es Sein
    - Epigraph to a String Quartet.
    Virginia (2003). Virginia Tech Physics Colloquium:
  3. strings. (2004). US. Airforce Academy Phyics Colloquium and Dinstinguished Lecture series
  4. D-branes, Gauge Theories and Calabi-Yau
    Singularities.
    BeiJing, China (2004). Chinese Academy of Sciences, Special Lecture Series
  5. To Macaulay2: A Wishlist from Physics. Cornell (2008). Computational Algebraic Geometry Conference
  6. Intro to Superstrings. Beijing (2008). Peking University, Special Lecture Series
  7. Quivers and Plethystics. Hong Kong (2008). Frontiers of Geometry Conference, Hong Kong, special invited speaker
  8. Quivers, MSSM and Heterotic string. Dublin (2009). Annual Irish QFT Meeting, keynote lecturer
  9. number theory and physics. Nankai, China (2011). First invite speaker: Graduate Symposium, and Physics Colloquium

Online Article

  1. . New Scientisthttp://www.newscientist.com/article/mg19726370.100-string-theory-may-predict-our-universe-after-all.html

Radio Programmes (2)

  1. A dialogue between faith and reason. New Jersey Catholic Radio On religion and science
  2. Allegretto. https://twitter.com/AllegrettoFM

Find us

City, University of London

Northampton Square

London EC1V 0HB

United Kingdom

Back to top

City, University of London is an independent member institution of the University of London. Established by Royal Charter in 1836, the University of London consists of 18 independent member institutions with outstanding global reputations and several prestigious central academic bodies and activities.