People
  1. Students
  2. Alumni
  3. Honorary Graduates
  4. Academic Experts
  1. Professor Yang-Hui He
People

Contact Information

Contact

Visit Professor Yang-Hui He

E233, Drysdale Building

null

Postal Address

City, University of London
Northampton Square
London
EC1V 0HB
UK

About

Background

Professor Yang-Hui He studied at Princeton University, where he received his Bachelor of Arts in Physics, with a Certificate in Applied Mathematics and a Certificate in Engineering, Summa cum Laude. He then obtained a Certificate in Advanced Mathematics (Tripos) at the University of Cambridge, with Distinction. He went on to receive his PhD in theoretical and mathematical physics from MIT. Yang continued with postdoctoral work in the University of Pennsylvania before joining Merton College, University of Oxford as the FitzJames Fellow in Mathematics and then the UK STFC Advanced Fellow in theoretical physics.

Yang joined City in 2010 as Reader in Mathematics. He is currently Professor of Mathematics and also holds the Chang-Jiang Chair Professorship and Qian-Ren Scholarship at NanKai University awarded by the Chinese Ministry of Education. He also remains a Tutor at Merton College, Oxford where he taught since 2005.

Qualifications

PhD Theoretical Physics,
MIT, 2002

MA Mathematics (Tripos, Distinction),
University of Cambridge, 1997

BA Physics, (Highest Honours, with Certificates in Maths and in Eng. Physics),
Princeton University, 1996

Employment

2014 - Professor of Mathematics, City University, London
2010 - 2013 City University London, Reader in Mathematics & STFC Advanced Fellow
2005 - 2010 Merton College & Dept of Theoretical Physics, Oxford University, Fellow
2002 - 2005 University of Pennsylvania, Research Associate

Other appointments

2010 - to date Nankai University, Chang-Jiang Chair Professor of Physics
2005 - to date Merton College, Oxford University, Tutor in Mathematics

Research

Yang is a mathematical physicist working on various interfaces between geometry and theoretical high energy physics. He is particularly interested in aspects of algebraic geometry in application to, and interacting with, gauge theory as well as string theory, such as Calabi-Yau manifolds, holographic correspondences and string phenomenology. He also has interests in the dialogue between number theory, graph representation theory and gauge theories.

Publications

  1. Gao, P., He, Y.-.H. and Yau, S.-.T. (2015). Extremal Bundles on Calabi–Yau Threefolds. Communications in Mathematical Physics, 336(3), pp. 1167–1200. doi:10.1007/s00220-014-2271-y.

Book (1)

  1. He, Y.-.H., Candelas, P., Hanany, A., Lukas, A. and Ovrut, B. (2012). Computational Algebraic Geometry in String and Gauge Theory.

Chapter (4)

  1. He, Y.-.H. (2012). Bipartita: Physics, Geometry and Number Theory.Symmetries and Groups in Contemporary Physics (pp. 321–326). Singapore: World Scientific Publishing. ISBN 978-981-4518-54-3.
  2. Ashmore, A. and He, Y.-.H. (2011). Calabi-Yau Three-folds: Poincare Polynomials and Fractals.Strings, Gauge Fields, and the Geometry Behind: The Legacy of Maximilian Kreuzer (pp. 173–186). ISBN 978-981-4412-54-4.
  3. He, Y., Feng, B. and Hanany, A. (2004). Horizons in world physics. In Lynch, T.V. (Ed.), Horizons in world physics Nova Science Pub Inc. ISBN 978-1-59454-063-9.
  4. He, Y., Feng, B. and Hanany, A. (2000). Z-D Brane Box Models and Non-Chiral Dihedral Quivers. In Golfand, Y. and Shifman, M.A. (Ed.), The many faces of the superworld (pp. 280–306). World Scientific Pub Co Inc. ISBN 978-981-02-4206-0.

Journal Article (106)

  1. He, Y.-.H. and Read, J. (2015). Hecke Groups, Dessins d’Enfants and the Archimedean Solids. Frontiers in Physics, 3 .
  2. Altman, R., Gray, J., He, Y.-.H., Jejjala, V. and Nelson, B.D. (2015). A Calabi-Yau Database: Threefolds Constructed from the Kreuzer-Skarke List. The Journal of High Energy Physics pp. 158–158. doi:10.1007/JHEP02(2015)158.
  3. He, Y.-.H., Jejjala, V., Matti, C., Nelson, B.D. and Stillman, M. (2015). The Geometry of Generations. Communications in Mathematical Physics, 339(1), pp. 149–190. doi:10.1007/s00220-015-2416-7.
  4. Gao, P., He, Y.-.H. and Yau, S.-.T. (2015). Extremal Bundles on Calabi–Yau Threefolds. Communications in Mathematical Physics, 336(3), pp. 1167–1200. doi:10.1007/s00220-014-2271-y.
  5. Bose, S., Gundry, J. and He, Y.-.H. (2015). Gauge theories and dessins d’enfants: beyond the torus. Journal of High Energy Physics, 2015(1) . doi:10.1007/JHEP01(2015)135.
  6. He, Y.-.H., Matti, C. and Sun, C. (2014). The scattering variety. Journal of High Energy Physics, 2014(10) . doi:10.1007/JHEP10(2014)135.
  7. He, Y.-.H., Jejjala, V., Matti, C. and Nelson, B.D. (2014). Veronese geometry and the electroweak vacuum moduli space. Physics Letters B, 736, pp. 20–25. doi:10.1016/j.physletb.2014.06.072.
  8. He, Y.-.H., Lee, S.-.J., Lukas, A. and Sun, C. (2014). Heterotic model building: 16 special manifolds. Journal of High Energy Physics, 2014(6) . doi:10.1007/JHEP06(2014)077.
  9. Duncan, M., Gu, W., He, Y.-.H. and Zhou, D. (2014). The statistics of vacuum geometry. Journal of High Energy Physics, 2014(6) . doi:10.1007/JHEP06(2014)042.
  10. He, Y.-.H. and van Loon, M. (2014). Gauge theories, tessellations & Riemann surfaces. Journal of High Energy Physics, 2014(6) . doi:10.1007/JHEP06(2014)053.
  11. He, Y.-.H. and McKay, J. (2014). Eta products, BPS states and K3 surfaces. Journal of High Energy Physics, 2014(1) . doi:10.1007/JHEP01(2014)113.
  12. He, Y.-.H., Mehta, D., Niemerg, M., Rummel, M. and Valeanu, A. (2013). Exploring the Potential Energy Landscape Over a Large Parameter-Space. JHEP, 1307, pp. 050–050. doi:10.1007/JHEP07(2013)050.
  13. He, Y.-.H. and McKay, J. (2013). N=2 Gauge Theories: Congruence Subgroups, Coset Graphs and Modular Surfaces. J.Math.Phys., 54, pp. 012301–012301. doi:10.1063/1.4772976.
  14. Braun, V., He, Y.-.H. and Ovrut, B.A. (2013). Supersymmetric Hidden Sectors for Heterotic Standard Models. JHEP, 1309, pp. 008–008. doi:10.1007/JHEP09(2013)008.
  15. He, Y.-.H. (2013). Calabi-Yau Geometries: Algorithms, Databases, and Physics. Int.J.Mod.Phys., A28, pp. 1330032–1330032. doi:10.1142/S0217751X13300329.
  16. He, Y.-.H., McKay, J. and Read, J. (2013). Modular Subgroups, Dessins d’Enfants and Elliptic K3 Surfaces. LMS J.Comp.Math., 16, pp. 271–318. doi:10.1112/S1461157013000119.
  17. Hanany, A., He, Y.-.H., Sun, C. and Sypsas, S. (2013). Superconformal block quivers, duality trees and Diophantine equations. Journal of High Energy Physics, 2013(11) . doi:10.1007/JHEP11(2013)017.
  18. Hauenstein, J., He, Y.-.H. and Mehta, D. (2013). Numerical elimination and moduli space of vacua. Journal of High Energy Physics, 2013(9) . doi:10.1007/JHEP09(2013)083.
  19. He, Y.-.H. and Lee, S.-.J. (2012). Quiver structure of heterotic moduli. JOURNAL OF HIGH ENERGY PHYSICS, (11) . doi:10.1007/JHEP11(2012)119.
  20. Gray, J., He, Y.-.H., Jejjala, V., Jurke, B., Nelson, B. and Simon, J. (2012). Necessary conditions on Calabi-Yau manifolds for large volume vacua. PHYSICAL REVIEW D, 86(10) . doi:10.1103/PhysRevD.86.101901.
  21. Franco, S., Galloni, D. and He, Y.-.H. (2012). Towards the continuous limit of cluster integrable systems. JOURNAL OF HIGH ENERGY PHYSICS, (9) . doi:10.1007/JHEP09(2012)020.
  22. Mehta, D., He, Y.-.H. and Hauenstein, J.D. (2012). Numerical algebraic geometry: a new perspective on gauge and string theories. JOURNAL OF HIGH ENERGY PHYSICS, (7) . doi:10.1007/JHEP07(2012)018.
  23. He, Y.-.H., Jejjela, V. and Rodriguez-Gomez, D. (2012). Brane geometry and dimer models. JOURNAL OF HIGH ENERGY PHYSICS, (6) . doi:10.1007/JHEP06(2012)143.
  24. Hanany, A., He, Y.-.H., Jejjala, V., Pasukonis, J., Ramgoolam, S. and Rodriguez-Gomez, D. (2012). INVARIANTS OF TORIC SEIBERG DUALITY. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 27(1) . doi:10.1142/S0217751X12500029.
  25. He, Y.-.H., Kreuzer, M., Lee, S.-.J. and Lukas, A. (2011). Heterotic bundles on Calabi-Yau manifolds with small Picard number. JOURNAL OF HIGH ENERGY PHYSICS, (12) . doi:10.1007/JHEP12(2011)039.
  26. Hanany, A. and He, Y.-.H. (2011). Chern-Simons: Fano and Calabi-Yau. Adv.High Energy Phys., 2011, pp. 204576–204576. doi:10.1155/2011/204576.
  27. He, Y.-.H. (2011). Polynomial Roots and Calabi-Yau Geometries. Adv.High Energy Phys., 2011, pp. 719672–719672. doi:10.1155/2011/719672.
  28. He, Y.-.H. (2011). Graph Zeta Function and Gauge Theories. JHEP, 1103, pp. 064–064. doi:10.1007/JHEP03(2011)064.
  29. Hanany, A., He, Y.-.H., Jejjala, V., Pasukonis, J., Ramgoolam, S. and others, (2011). The Beta Ansatz: A Tale of Two Complex Structures. JHEP, 1106, pp. 056–056. doi:10.1007/JHEP06(2011)056.
  30. Anderson, L.B., Gray, J., Grayson, D., He, Y.-.H. and Lukas, A. (2010). Yukawa Couplings in Heterotic Compactification. Commun.Math.Phys., 297, pp. 95–127. doi:10.1007/s00220-010-1033-8.
  31. Hewlett, J. and He, Y.-.H. (2010). Probing the Space of Toric Quiver Theories. JHEP, 1003, pp. 007–007. doi:10.1007/JHEP03(2010)007.
  32. Benishti, N., He, Y.-.H. and Sparks, J. (2010). (Un)Higgsing the M2-brane. JHEP, 1001, pp. 067–067. doi:10.1007/JHEP01(2010)067.
  33. He, Y.-.H. (2010). An Algorithmic Approach to Heterotic String Phenomenology. Mod.Phys.Lett., A25, pp. 79–90. doi:10.1142/S0217732310032731.
  34. He, Y.-.H. (2010). On Fields over Fields. .
  35. He, Y.-.H., Jejjala, V. and Minic, D. (2010). On the Physics of the Riemann Zeros. . doi:10.1088/1742-6596/462/1/012036.
  36. He, Y.H., Lee, S.J. and Lukas, A. (2010). Heterotic models from vector bundles on toric Calabi-Yau manifolds. Journal of High Energy Physics, 2010(5) . doi:10.1007/JHEP05(2010)071.
  37. Anderson, L.B., Gray, J., He, Y.H. and Lukas, A. (2010). Exploring positive monad bundles and a new heterotic standard model. Journal of High Energy Physics, 2010(2) . doi:10.1007/JHEP02(2010)054.
  38. Gray, J., He, Y.-.H., Ilderton, A. and Lukas, A. (2009). STRINGVACUA: A Mathematica Package for Studying Vacuum Configurations in String Phenomenology. Comput.Phys.Commun., 180, pp. 107–119. doi:10.1016/j.cpc.2008.08.009.
  39. He, Y.-.H., Jejjala, V. and Minic, D. (2009). Eigenvalue Density, Li’s Positivity, and the Critical Strip. .
  40. Feng, B., He, Y.-.H., Kennaway, K.D. and Vafa, C. (2008). Dimer models from mirror symmetry and quivering amoebae. Advances in Theoretical and Mathematical Physics, 12(3), pp. 489–545. doi:10.4310/ATMP.2008.v12.n3.a2.
  41. Candelas, P., de la Ossa, X., He, Y.-.H. and Szendroi, B. (2008). Triadophilia: A Special Corner in the Landscape. Adv.Theor.Math.Phys., 12, pp. 429–473. doi:10.4310/ATMP.2008.v12.n2.a6.
  42. Balasubramanian, V., Czech, B., He, Y.-.H., Larjo, K. and Simon, J. (2008). Typicality, Black Hole Microstates and Superconformal Field Theories. JHEP, 0803, pp. 008–008. doi:10.1088/1126-6708/2008/03/008.
  43. Forcella, D., Hanany, A., He, Y.-.H. and Zaffaroni, A. (2008). The Master Space of N=1 Gauge Theories. JHEP, 0808, pp. 012–012. doi:10.1088/1126-6708/2008/08/012.
  44. Forcella, D., Hanany, A., He, Y.-.H. and Zaffaroni, A. (2008). Mastering the Master Space. Lett.Math.Phys., 85, pp. 163–171. doi:10.1007/s11005-008-0255-6.
  45. Gray, J., Hanany, A., He, Y.-.H., Jejjala, V. and Mekareeya, N. (2008). SQCD: A Geometric Apercu. JHEP, 0805, pp. 099–099. doi:10.1088/1126-6708/2008/05/099.
  46. Anderson, L.B., He, Y.-.H. and Lukas, A. (2008). Monad Bundles in Heterotic String Compactifications. JHEP, 0807, pp. 104–104. doi:10.1088/1126-6708/2008/07/104.
  47. Gabella, M., He, Y.-.H. and Lukas, A. (2008). An Abundance of Heterotic Vacua. JHEP, 0812, pp. 027–027. doi:10.1088/1126-6708/2008/12/027.
  48. Hanany, A. and He, Y.-.H. (2008). M2-Branes and Quiver Chern-Simons: A Taxonomic Study. .
  49. Benvenuti, S., Feng, B., Hanany, A. and He, Y.-.H. (2007). Counting BPS Operators in Gauge Theories: Quivers, Syzygies and Plethystics. JHEP, 0711, pp. 050–050. doi:10.1088/1126-6708/2007/11/050.
  50. Feng, B., Hanany, A. and He, Y.-.H. (2007). Counting gauge invariants: The Plethystic program. JHEP, 0703, pp. 090–090. doi:10.1088/1126-6708/2007/03/090.
  51. Anderson, L.B., He, Y.-.H. and Lukas, A. (2007). Heterotic Compactification, An Algorithmic Approach. JHEP, 0707, pp. 049–049. doi:10.1088/1126-6708/2007/07/049.
  52. Gray, J., He, Y.-.H., Ilderton, A. and Lukas, A. (2007). A New Method for Finding Vacua in String Phenomenology. JHEP, 0707, pp. 023–023. doi:10.1088/1126-6708/2007/07/023.
  53. He, Y.-.H. (2007). Vacuum Geometry and the Search for New Physics. eConf, C0706044, pp. 04–04.
  54. Braun, V., He, Y.-.H., Ovrut, B.A. and Pantev, T. (2006). Vector bundle extensions, sheaf cohomology, and the heterotic standard model. Advances in Theoretical and Mathematical Physics, 10(4), pp. 525–589. doi:10.4310/ATMP.2006.v10.n4.a3.
  55. Braun, V., He, Y.-.H., Ovrut, B.A. and Pantev, T. (2006). Vector bundle extensions, sheaf cohomology, and the heterotic standard model. Adv.Theor.Math.Phys., 10, pp. 4–4.
  56. Braun, V., He, Y.-.H., Ovrut, B.A. and Pantev, T. (2006). Heterotic standard model moduli. JHEP, 0601, pp. 025–025. doi:10.1088/1126-6708/2006/01/025.
  57. Braun, V., He, Y.-.H., Ovrut, B.A. and Pantev, T. (2006). Moduli dependent mu-terms in a heterotic standard model. JHEP, 0603, pp. 006–006. doi:10.1088/1126-6708/2006/03/006.
  58. Gray, J., He, Y.-.H., Jejjala, V. and Nelson, B.D. (2006). Vacuum geometry and the search for new physics. Phys.Lett., B638, pp. 253–257. doi:10.1016/j.physletb.2006.05.026.
  59. Braun, V., He, Y.-.H., Ovrut, B.A. and Pantev, T. (2006). The Exact MSSM spectrum from string theory. JHEP, 0605, pp. 043–043. doi:10.1088/1126-6708/2006/05/043.
  60. Braun, V., He, Y.-.H. and Ovrut, B.A. (2006). Yukawa couplings in heterotic standard models. JHEP, 0604, pp. 019–019. doi:10.1088/1126-6708/2006/04/019.
  61. Braun, V., He, Y.-.H. and Ovrut, B.A. (2006). Stability of the minimal heterotic standard model bundle. JHEP, 0606, pp. 032–032. doi:10.1088/1126-6708/2006/06/032.
  62. Gray, J., He, Y.-.H., Jejjala, V. and Nelson, B.D. (2006). Exploring the vacuum geometry of N=1 gauge theories. Nucl.Phys., B750, pp. 1–27. doi:10.1016/j.nuclphysb.2006.06.001.
  63. Gray, J., He, Y.-.H. and Lukas, A. (2006). Algorithmic Algebraic Geometry and Flux Vacua. JHEP, 0609, pp. 031–031. doi:10.1088/1126-6708/2006/09/031.
  64. Donagi, R., He, Y.-.H., Ovrut, B.A. and Reinbacher, R. (2005). Higgs doublets, split multiplets and heterotic SU(3)(C) x SU(2)(L) x U(1)(Y) spectra. Phys.Lett., B618, pp. 259–264. doi:10.1016/j.physletb.2005.05.004.
  65. Donagi, R., He, Y.-.H., Ovrut, B.A. and Reinbacher, R. (2005). The Spectra of heterotic standard model vacua. JHEP, 0506, pp. 070–070. doi:10.1088/1126-6708/2005/06/070.
  66. Braun, V., He, Y.-.H., Ovrut, B.A. and Pantev, T. (2005). A Heterotic standard model. Phys.Lett., B618, pp. 252–258. doi:10.1016/j.physletb.2005.05.007.
  67. Braun, V., He, Y.-.H., Ovrut, B.A. and Pantev, T. (2005). A Standard model from the E(8) x E(8) heterotic superstring. JHEP, 0506, pp. 039–039. doi:10.1088/1126-6708/2005/06/039.
  68. He, Y.-.H. (2005). GUT particle spectrum from heterotic compactification. Mod.Phys.Lett., A20, pp. 1483–1494. doi:10.1142/S0217732305017627.
  69. He, Y.-.H., Ovrut, B.A. and Reinbacher, R. (2004). The Moduli of reducible vector bundles. JHEP, 0403, pp. 043–043. doi:10.1088/1126-6708/2004/03/043.
  70. Franco, S., Hanany, A. and He, Y.-.H. (2004). A Trio of dualities: Walls, trees and cascades. Fortsch.Phys., 52, pp. 540–547. doi:10.1002/prop.200310142.
  71. Franco, S., He, Y.-.H., Herzog, C. and Walcher, J. (2004). Chaotic duality in string theory. Phys.Rev., D70, pp. 046006–046006. doi:10.1103/PhysRevD.70.046006.
  72. Feng, B., He, Y.-.H. and Lam, F. (2004). On correspondences between toric singularities and (p,q) webs. Nucl.Phys., B701, pp. 334–356. doi:10.1016/j.nuclphysb.2004.08.048.
  73. Donagi, R., He, Y.-.H., Ovrut, B.A. and Reinbacher, R. (2004). Moduli dependent spectra of heterotic compactifications. Phys.Lett., B598, pp. 279–284. doi:10.1016/j.physletb.2004.08.010.
  74. Donagi, R., He, Y.-.H., Ovrut, B.A. and Reinbacher, R. (2004). The Particle spectrum of heterotic compactifications. JHEP, 0412, pp. 054–054. doi:10.1088/1126-6708/2004/12/054.
  75. He, Y.-.H. (2004). Lectures on D-branes, gauge theories and Calabi-Yau singularities. .
  76. Franco, S., He, Y.-.H., Herzog, C. and Walcher, J. (2004). Chaotic cascades for D-branes on singularities. pp. 305–309.
  77. Feng, B., Hanany, A., He, Y.H. and Iqbal, A. (2003). Quiver theories, soliton spectra and Picard-Lefschetz transformations. JHEP, 0302, pp. 056–056. doi:10.1088/1126-6708/2003/02/056.
  78. Feng, B., Franco, S., Hanany, A. and He, Y.-.H. (2003). UnHiggsing the del Pezzo. JHEP, 0308, pp. 058–058. doi:10.1088/1126-6708/2003/08/058.
  79. He, Y.-.H. (2003). G(2) quivers. JHEP, 0302, pp. 023–023. doi:10.1088/1126-6708/2003/02/023.
  80. He, Y.-.H., Schwarz, J.H., Spradlin, M. and Volovich, A. (2003). Explicit formulas for Neumann coefficients in the plane wave geometry. Phys.Rev., D67, pp. 086005–086005. doi:10.1103/PhysRevD.67.086005.
  81. Feng, B. and He, Y.-.H. (2003). Seiberg duality in matrix models. 2. Phys.Lett., B562, pp. 339–346. doi:10.1016/S0370-2693(03)00597-5.
  82. Balasubramanian, V., de Boer, J., Feng, B., He, Y.-.H., Huang, M.-.X. and others, (2003). Multitrace superpotentials vs. matrix models. Commun.Math.Phys., 242, pp. 361–392.
  83. He, Y.-.H. (2003). Closed string tachyons, nonsupersymmetric orbifolds and generalized McKay correspondence. Adv.Theor.Math.Phys., 7, pp. 121–144. doi:10.4310/ATMP.2003.v7.n1.a5.
  84. Franco, S., Hanany, A., He, Y.-.H. and Kazakopoulos, P. (2003). Duality walls, duality trees and fractional branes. .
  85. He, Y.-.H. and Jejjala, V. (2003). Modular matrix models. .
  86. Feng, B., Hanany, A., He, Y.-.H. and Prezas, N. (2002). Stepwise projection: toward brane setups for generic orbifold singularities. JHEP, 0201, pp. 040–040. doi:10.1088/1126-6708/2002/01/040.
  87. Feng, B., He, Y.-.H. and Moeller, N. (2002). The Spectrum of the Neumann matrix with zero modes. JHEP, 0204, pp. 038–038. doi:10.1088/1126-6708/2002/04/038.
  88. Feng, B., He, Y.-.H. and Moeller, N. (2002). Zeeman spectroscopy of the star algebra. JHEP, 0205, pp. 041–041. doi:10.1088/1126-6708/2002/05/041.
  89. Feng, B., Franco, S., Hanany, A. and He, Y.-.H. (2002). Symmetries of toric duality. JHEP, 0212, pp. 076–076. doi:10.1088/1126-6708/2002/12/076.
  90. He, Y.-.H. (2002). On algebraic singularities, finite graphs and D-brane gauge theories: A String theoretic perspective. .
  91. Hanany, A. and He, Y.-.H. (2001). A Monograph on the classification of the discrete subgroups of SU(4). JHEP, 0102, pp. 027–027. doi:10.1088/1126-6708/2001/02/027.
  92. Feng, B., Hanany, A. and He, Y.-.H. (2001). D-brane gauge theories from toric singularities and toric duality. Nucl.Phys., B595, pp. 165–200. doi:10.1016/S0550-3213(00)00699-4.
  93. Feng, B., Hanany, A., He, Y.-.H. and Prezas, N. (2001). Discrete torsion, nonAbelian orbifolds and the schur multiplier. JHEP, 0101, pp. 033–033. doi:10.1088/1126-6708/2001/01/033.
  94. Feng, B., Hanany, A., He, Y.-.H. and Prezas, N. (2001). Discrete torsion, covering groups and quiver diagrams. JHEP, 0104, pp. 037–037. doi:10.1088/1126-6708/2001/04/037.
  95. Feng, B., He, Y.-.H. and Moeller, N. (2001). Testing the uniqueness of the open bosonic string field theory vacuum. .
  96. Feng, B., He, Y.-.H., Karch, A. and Uranga, A.M. (2001). Orientifold dual for stuck NS5-branes. JHEP, 0106, pp. 065–065. doi:10.1088/1126-6708/2001/06/065.
  97. Feng, B., Hanany, A. and He, Y.-.H. (2001). Phase structure of D-brane gauge theories and toric duality. JHEP, 0108, pp. 040–040. doi:10.1088/1126-6708/2001/08/040.
  98. Ellwood, I., Feng, B., He, Y.-.H. and Moeller, N. (2001). The Identity string field and the tachyon vacuum. JHEP, 0107, pp. 016–016. doi:10.1088/1126-6708/2001/07/016.
  99. Feng, B., Hanany, A., He, Y.-.H. and Uranga, A.M. (2001). Toric duality as Seiberg duality and brane diamonds. JHEP, 0112, pp. 035–035. doi:10.1088/1126-6708/2001/12/035.
  100. He, Y.-.H. and Song, J.S. (2000). Of McKay correspondence, nonlinear sigma model and conformal field theory. Adv.Theor.Math.Phys., 4, pp. 747–790.
  101. Feng, B. and He, Y.-.H. (2000). An Observation on finite groups and WZW modular invariants. .
  102. Hanany, A. and He, Y.-.H. (1999). NonAbelian finite gauge theories. JHEP, 9902, pp. 013–013. doi:10.1088/1126-6708/1999/02/013.
  103. Feng, B., Hanany, A. and He, Y.-.H. (1999). The Z(k) x D(k-prime) brane box model. JHEP, 9909, pp. 011–011. doi:10.1088/1126-6708/1999/09/011.
  104. Feng, B., Hanany, A. and He, Y.-.H. (1999). Z - D-brane box models and nonchiral dihedral quivers. .
  105. He, Y.-.H. (1999). Some remarks on the finitude of quiver theories. In.J.Math.Math.Sci. .
  106. He, Y.-.H. and McKay, J. Moonshine and the Meaning of Life. Eureka .

Software (1)

  1. He, Y., Gray, J., Ilderton, A. and Lukas, A. STRINGVACUA: A Mathematica Package for Studying Vacuum Configurations in String Phenomenology. Comput.Phys.Commun. 180 (2009) 107-119.

Other Activities

Editorial Activity (3)

  1. Lead guest Editor, Advances in High Energy Physics
  2. Editor in Chief, Journal of Modern Physics,
  3. Editor, The Scientific World Journal

Keynote Lecture/Speech (9)

  1. number theory and physics. Nankai, China (2011). First invite speaker: Graduate Symposium, and Physics Colloquium
  2. Quivers, MSSM and Heterotic string. Dublin (2009). Annual Irish QFT Meeting, keynote lecturer
  3. Quivers and Plethystics. Hong Kong (2008). Frontiers of Geometry Conference, Hong Kong, special invited speaker
  4. Intro to Superstrings. Beijing (2008). Peking University, Special Lecture Series
  5. To Macaulay2: A Wishlist from Physics. Cornell (2008). Computational Algebraic Geometry Conference
  6. D-branes, Gauge Theories and Calabi-Yau
    Singularities.
    BeiJing, China (2004). Chinese Academy of Sciences, Special Lecture Series
  7. strings. (2004). US. Airforce Academy Phyics Colloquium and Dinstinguished Lecture series
  8. Muss Es Sein
    - Epigraph to a String Quartet.
    Virginia (2003). Virginia Tech Physics Colloquium:
  9. Quiver and D-Branes. Hong Kong (2002). HK Geometry Symposium

Online Article (1)

  1. . New Scientisthttp://www.newscientist.com/article/mg19726370.100-string-theory-may-predict-our-universe-after-all.html

Radio Programme (2)

  1. A dialogue between faith and reason. New Jersey Catholic Radio On religion and science
  2. Allegretto. https://twitter.com/AllegrettoFM

Find us

City, University of London

Northampton Square

London EC1V 0HB

United Kingdom

Back to top

City, University of London is an independent member institution of the University of London. Established by Royal Charter in 1836, the University of London consists of 18 independent member institutions with outstanding global reputations and several prestigious central academic bodies and activities.