People
  1. Students
  2. Alumni
  3. Honorary Graduates
  4. Academic Experts
  1. Maud De Visscher
People

Contact Information

Contact

Visit Maud De Visscher

E230, Drysdale Building

null

Postal Address

City, University of London
Northampton Square
London
EC1V 0HB
United Kingdom

About

Background

Dr De Visscher studied at the Free University of Brussels graduating with a Licence in Mathematical Science in 1999. As part of her degree she spent one year as an Erasmus students at the University of East Anglia, graduating with a MSc in pure Mathematics in 1998. She prepared her PhD at the University of Oxford in 2000-2003. After working at Queen Mary College London, she joined City University London in 2005.

Qualifications

DPhil Mathematics, Oxford University, 2003
Licence Mathematics, Free University of Brussels, 1999
Aggregation Teaching Qualification, Free University of Brussels, 1999
MSc Mathematics, University of East Anglia, 1998

Employment

02/2003 - 09/2005: Queen Mary University of London, EPSRC Postdoctoral Research Assistant

10/2005 - present: City University London, Lecturer

Membership of professional bodies

02/2003 London Mathematical Society, Associate Member

Research

Dr De Visscher's research interests are in algebra, more specifically in the representation theory of algebraic groups and related finite groups and finite dimensional algebras. Her recent projects have been focusing on the representations of the (walled) Brauer and partition algebras and connections with the symmetric group.

Research Students

Name
Oliver King
Thesis Title
Modular representation theory of diagram algebras

Publications

Conference Paper/Proceedings

  1. De Visscher, M., Bowman, C. and Orellana, R. (2013). The partition algebra and the Kronecker product (Extended Abstract). FPSAC2013 24-28 June, Paris, France.

Journal Articles (15)

  1. De Visscher, M. and Martin, P.P. (2016). On Brauer algebra simple modules over the complex field. Transactions of the American Mathematical Society, 369(3), pp. 1579–1609. doi:10.1090/tran/6716.
  2. Bowman, C., De Visscher, M. and King, O. (2015). The Blocks of the Partition Algebra in Positive Characteristic. Algebras and Representation Theory, 18(5), pp. 1357–1388. doi:10.1007/s10468-015-9544-9.
  3. Bowman, C., De Visscher, M. and Orellana, R. (2014). The partition algebra and the Kronecker coefficients. Transactions of the American Mathematical Society, 367(5), pp. 3647–3667. doi:10.1090/S0002-9947-2014-06245-4.
  4. Bowman, C., Cox, A.G. and De Visscher, M. (2013). Decomposition numbers for the cyclotomic Brauer algebras in
    characteristic zero.
    J Algebra, 378, pp. 80–102.
  5. Cox, A. and De Visscher, M. (2011). Diagrammatic Kazhdan-Lusztig theory for the (walled) Brauer algebra. JOURNAL OF ALGEBRA, 340(1), pp. 151–181. doi:10.1016/j.jalgebra.2011.05.024.
  6. Cox, A., De Visscher, M. and Martin, P. (2010). Alcove geometry and a translation principle for the Brauer algebra. Journal of Pure and Applied Algebra . doi:10.1016/j.jpaa.2010.04.023.
  7. Cox, A., De Visscher, M. and Martin, P. (2009). A geometric characterisation of the blocks of the Brauer algebra. J LOND MATH SOC, 80, pp. 471–494. doi:10.1112/jlms/jdp039.
  8. Cox, A., De Visscher, M. and Martin, P. (2009). The blocks of the Brauer algebra in characteristic zero. Representation Theory, 13, pp. 272–308. doi:10.1090/S1088-4165-09-00305-7.

    [publisher’s website]

  9. Cox, A., De Visscher, M., Doty, S. and Martin, P. (2008). On the blocks of the walled Brauer algebra. J ALGEBRA, 320(1), pp. 169–212. doi:10.1016/j.jalgebra.2008.01.026.
  10. De Visscher, M. (2008). On the blocks of semisimple algebraic groups and associated generalized Schur algebras. Journal of Algebra, 319(3), pp. 952–965. doi:10.1016/j.jalgebra.2007.11.015.
  11. De Visscher, M. (2006). A note on the tensor product of restricted simple modules for algebraic groups. Journal of Algebra, 303, pp. 407–415.
  12. De Visscher, M. and Donkin, S. (2005). On projective and injective polynomial modules. MATH Z, 251(2), pp. 333–358. doi:10.1007/s00209-005-0805-x.
  13. De Visscher, M. (2005). Quasi-hereditary quotients of finite Chevalley groups and Frobenius kernels. Quarterly Journal of Mathematics, 56, pp. 111–121.
  14. De Visscher, M. (2002). Extensions of modules for SL(2,K). J ALGEBRA, 254(2), pp. 409–421.
  15. Bowman, C., De Visscher, M. and Enyang, J. Simple modules for the partition algebra and monotone convergence of Kronecker coefficients. International Mathematics Research Notices, 2017, pp. 1–39. doi:10.1093/irmn/rnx095.

Education

Teaching for 2013-14

MA1610 Mathematical Communication
MA1200 Mathematics for Economists post GCSE (1)
MA2XXX Mathematical Typesetting

Find us

City, University of London

Northampton Square

London EC1V 0HB

United Kingdom

Back to top

City, University of London is an independent member institution of the University of London. Established by Royal Charter in 1836, the University of London consists of 18 independent member institutions with outstanding global reputations and several prestigious central academic bodies and activities.