People
  1. Students
  2. Alumni
  3. Honorary Graduates
  4. Academic Experts
  1. Professor Artur d'Avila Garcez
People

portrait of Professor Artur d'Avila Garcez

Professor Artur d'Avila Garcez

Professor of Computer Science

School of Mathematics, Computer Science & Engineering, Department of Computer Science

Contact Information

Contact

Visit Professor Artur d'Avila Garcez

A309H, College Building

null

Postal Address

City, University of London
Northampton Square
London
EC1V 0HB
United Kingdom

About

Background

Professor Artur Garcez is Director of the Research Centre for Machine Learning at City, University of London. He holds a PhD in Computing (2000) from Imperial College London. He is a Fellow of the British Computer Society (FBCS).

Professor Garcez has an established track record of research in Machine Learning, Neural Computation and Artificial Intelligence. He is president of the steering committee of the
Neural-Symbolic Learning and Reasoning Association
, and founding course director of City's MSc in Data Science. He has co-authored two books: Neural-Symbolic Cognitive Reasoning, 2009, and Neural-Symbolic Learning Systems, 2002. His research has led to publications in the journals Behavioral & Brain Sciences, Theoretical Computer Science, Neural Computation, Machine Learning, Journal of Logic and Computation, IEEE Transactions on Neural Networks, Journal of Applied Logic, Artificial Intelligence, and Studia Logica, and the flagship AI and Neural Computation conferences AAAI, NIPS, IJCAI, IJCNN, AAMAS and ECAI.

Professor Garcez holds editorial positions with several scientific journals in the fields of Computational Logic and Artificial Intelligence, and has been Programme Committee member for several conferences, including IJCAI, IJCNN, NIPS and AAAI.

Qualifications

PhD Computing, Imperial College London, 2000
MSc Systems Engineering and Computing, COPPE/UFRJ, 1996
MEng Computing Engineering, PUC-RJ, 1993

Employment

Professor of Computer Science, City, University of London (since 2015)
Lecturer/Senior Lecturer/Reader in Neural-Symbolic Computing, City University London
Research Associate, Imperial College London
Trainee, IBM Brazil

Research Interests:

Neural-Symbolic Computation, Neural Networks and Applied Logic, Complex Networks
Machine Learning, Integrating Robust Learning and Reasoning under Uncertainty
Cognitive Agents and Intelligent Systems, Knowledge Extraction, Visual Information Processing
Business Process Evolution, Requirements Engineering, Automated Software Engineering

Professional memberships:

Fellow of the British Computer Society (BCS)
IEEE Computer Society
AAAI (Association for the Advancement of Artificial Intelligence), Menlo Park, CA
City & Guilds College Association, London, UK
Computability in Europe (CiE) Association

More Information:

Research group: Machine Learning
Personal Website

Publications

Books (4)

  1. Garcez, A.S.D., Lamb, L.C. and Gabbay, D.M. (2009). Neural-Symbolic Cognitive Reasoning. Cognitive Technologies. Springer-Verlag New York Inc. ISBN 978-3-540-73245-7.
  2. Artemov, S., Barringer, H., Garcez, A., Lamb, L.C. and Woods, J. (2005). We Will Show Them! Essays in Honour of Dov Gabbay. College Pubns. ISBN 978-1-904987-26-0.
  3. Artemov, S., Barringer, H., Garcez, A., Lamb, L.C. and Woods, J. (2005). We Will Show Them! Essays in Honour of Dov Gabbay. College Pubns. ISBN 978-1-904987-11-6.
  4. Garcez, A.S.D., Broda, K. and Gabbay, D.M. (2002). Neural-symbolic learning systems: Foundations and Applications. Perspectives in Neural Computing. Springer Verlag. ISBN 978-1-85233-512-0.

Chapters (9)

  1. Perotti, A., Garcez, A.D.A. and Boella, G. (2015). Neural-symbolic monitoring and adaptation. ISBN 978-1-4799-1960-4.
  2. Garcez, A.D. and Lamb, L.C. (2012). Learning and Argumentation in Neural-Symbolic Computation. In Seel, N.M. (Ed.), Encyclopedia of the Sciences of Learning Not Avail. ISBN 978-1-4419-1427-9.
  3. de Penning, L., Garcez, A.D., Lamb, L.C. and Meyer, J.J. (2011). A Neural-Symbolic Cognitive Agent for Online Learning and Reasoning. Proceedings of the Twenty-Second international joint conference on Artificial Intelligence (pp. 1653–1658). ISBN 978-1-57735-514-4.
  4. Garcez, A.D. and Lamb, L.C. (2011). Cognitive Reasoning and Knowledge Representation. In Cutsuridis, V., Hussain, A. and Taylor, J.G. (Eds.), Perception-Action Cycle: Models, Algorithms and Hardware (p. 573). Springer Verlag. ISBN 978-1-4419-1451-4.
  5. Garcez, A.D. (2007). Advances in Neural-Symbolic Learning Systems: Modal and Temporal Reasoning. In Hammer, B. and Hitzler, P. (Eds.), Perspectives of neural-symbolic integration Springer Verlag. ISBN 978-3-540-73953-1.
  6. Garcez, A.D. and Lamb, L.C. (2005). Neural-Symbolic Systems and The Case for Non-Classical Reasoning. In Artemov, S., Barringer, H., Garcez, A.D., Lamb, L.C. and Woods, J. (Eds.), We Will Show Them! Essays in Honour of Dov Gabbay College Pubns. ISBN 978-1-904987-11-6.
  7. Garcez, A.D. (2004). On Gabbay's Fibring Methodology for Bayesian and Neural Networks. In Gillies, D. (Ed.), Laws and models in science College Publications. ISBN 978-0-9543006-6-1.
  8. Garcez, A.D., Lamb, L.C. and Gabbay, D.M. (2003). Neural-Symbolic Intuitionistic Reasoning. In Abraham, A., Köppen, M. and Franke, K. (Eds.), Frontiers in Artificial Intelligence and Applications IOS Press. ISBN 978-1-58603-394-1.
  9. Garcez, A.D., Zaverucha, G. and de Carvalho, L.A.V. (1997). Logic Programming and Inductive Learning in Artificial Neural Networks. In H, C., Reine, F. and Strohmaier, A. (Eds.), Knowledge Representation in Neural Networks (pp. 33–46). ISBN 978-3-931216-77-1.

Conference Papers and Proceedings (66)

  1. Percy, C., D'Avila Garcez, A.S., Dragicevic, S., França, M.V.M., Slabaugh, G. and Weyde, T. (2016). The need for knowledge extraction: Understanding harmful gambling behavior with neural networks. .
  2. Franca, M.V.M., Zaverucha, G. and d'Avila Garcez, A. (2015). Neural Relational Learning Through Semi-Propositionalization of Bottom Clauses. 2015 AAAI Spring Symposium Series 23-25 March, Stanford University, USA.
  3. Perotti, A., Boella, G. and Garcez, A.D. (2015). Runtime verification through forward chaining. .
  4. Cherla, S., Tran, S.N., Garcez, A.D.A. and Weyde, T. (2015). Discriminative learning and inference in the Recurrent Temporal RBM for melody modelling. .
  5. Besold, T.R., Kühnberger, K.U., Garcez, A.D., Saffiotti, A., Fischer, M.H. and Bundy, A. (2015). Anchoring Knowledge In Interaction: Towards a harmonic subsymbolic/symbolic framework and architecture of computational cognition. .
  6. Tran, S.N. and Garcez, A.D.A. (2015). Efficient representation ranking for transfer learning. .
  7. Garcez, A.D.A., Besold, T.R., De Raedt, L., Foldiak, P., Hitzler, P., Icard, T., Kiihnberger, K.U., Lamb, L.C., Miikkulainen, R. and Silver, D.L. (2015). Neural-symbolic learning and reasoning: Contributions and challenges. .
  8. Sigtia, S., Benetos, E., Boulanger-Lewandowski, N., Weyde, T., D'Avila Garcez, A.S. and Dixon, S. (2015). A hybrid recurrent neural network for music transcription. .
  9. Perotti, A., Boella, G. and D'Avila Garcez, A. (2014). Scalable process monitoring through rules and neural networks. .
  10. Sigtia, S., Benetos, E., Cherla, S., Weyde, T., Garcez, A.S.D. and Dixon, S. (2014). An RNN-based Music Language Model for Improving Automatic Music Transcription. .
  11. De Penning, L., D'Avila Garcez, A.S., Lamb, L.C. and Meyer, J.J.C. (2014). Neural-symbolic cognitive agents: Architecture, theory and application. .
  12. Perotti, A., D'Avila Garcez, A. and Boella, G. (2014). Neural Networks for Runtime Verification. .
  13. De Penning, L., D'Avila Garcez, A.S., Lamb, L.C., Stuiver, A. and Meyer, J.J.C. (2014). Applying Neural-Symbolic Cognitive Agents in Intelligent Transport Systems to reduce CO<inf>2</inf> emissions. .
  14. Tran, S.N., Benetos, E. and D'Avila Garcez, A. (2014). Learning motion-difference features using Gaussian restricted Boltzmann machines for efficient human action recognition. .
  15. Tran, S.N., Wolff, D., Weyde, T. and Garcez, A.D.A. (2014). Feature preprocessing with Restricted Boltzmann Machines for music similarity learning. .
  16. Boella, G., Colombo Tosatto, S., Garcez, A.D., Genovese, V., Ienco, L. and van der Torre, L. (2011). Embedding Normative Reasoning into Neural-Symbolic Systems. IJCAI Workshop on Neural-Symbolic Learning and Reasoning NeSy11 July, Barcelona.
  17. Boella, G., Colombo Tosatto, S., Garcez, A.D., Genovese, V., Ienco, D. and van der Torre, L. (2011). A Neural-Symbolic System for Normative Agents. 10th International Conference on Autonomous Agents and Multiagent Systems (AAMAS'11) May, Taipei.
  18. Borges, R.V., Garcez, A.D., Lamb, L.C. and Nuseibeh, B. (2011). Learning to Adapt Requirements Specifications of Evolving Systems. 33rd International Conference on Software Engineering (ICSE'11), New Ideas and Emerging Results (NIER\ Track) May, Waikiki.
  19. Borges, R.V., Garcez, A.D., Lamb, L.C., Nuseibeh, B. and IEEE, (2011). Learning to Adapt Requirements Specifications of Evolving Systems (NIER Track). .
  20. Garcez, A.D., Lamb, L.C. and Hitzler, P. (2011). Proceedings of IJCAI International Workshop on Neural-Symbolic Learning and Reasoning (NeSy11). Barcelona, Spain.
  21. Garcez, A.D., de Penning, L., Lamb, L.C. and Meyer, J.J. (2010). An Integrated Neural Symbolic Cognitive Agent Architecture for Training and Assessment in Simulators. AAAI Workshop on Neural-Symbolic Learning and Reasoning NeSy'10 July, Georgia.
  22. Komendantskaya, E., Broda, K. and Garcez, A.D. (2010). Using Inductive Types for Ensuring Correctness of Neuro-Symbolic Computations. Computability in Europe CiE 2010 June, Ponta Delgada, Portugal.
  23. Boella, G., Colombo Tosatto, S., Garcez, A.D. and Genovese, V. (2010). On the Relationship between I-O Logic and Connectionism. Nonmonotonic Reasoning NMR 2010 Preferences and Norms workshop May, Toronto.
  24. Garcez, A.D. (2010). Neurons and Symbols: A Manifesto. Dagstuhl Seminar Proceedings 10302. Learning paradigms in dynamic environments Schloss Dagstuhl Leibniz-Zentrum fuer Informatik.
  25. Guillame-Bert, M., Broda, K. and Garcez, A.D. (2010). First-order Logic Learning in Artificial Neural Networks. .
  26. Ryman-Tubb, N.F., Garcez, A.D. and IEEE, (2010). SOAR - Sparse Oracle-based Adaptive Rule Extraction: Knowledge extraction from large-scale datasets to detect credit card fraud. .
  27. Komendantskaya, E., Broda, K. and Garcez, A.D.A. (2010). Neuro-symbolic representation of logic programs defining infinite sets. .
  28. Borges, R.V., Garcez, A.D. and Lamb, L.C. (2010). Representing, Learning and Extracting Temporal Knowledge from Neural Networks: A Case Study. .
  29. Garcez, A.D. and Hitzler, P. (2009). Proceedings of IJCAI International Workshop on Neural-Symbolic Learning and Reasoning (NeSy09). Pasadena, USA .
  30. Ren, L. and Garcez, A.D.A. (2009). Symbolic knowledge extraction from support vector machines: A geometric approach. .
  31. Garcez, A.D. and Hitzler, P. (2008). Proceedings of ECAI International Workshop on Neural-Symbolic Learning and Reasoning (NeSy08). Patras, Greece.
  32. Borges, R.V., Lamb, L.C. and Garcez, A.D. (2007). Reasoning and Learning about Past Temporal Knowledge in Connectionist Models. 20th International Joint Conference on Neural Networks (IJCNN 2007) August, Orlando.
  33. Lamb, L.C., Borges, R.V. and Garcez, A.D. (2007). A Connectionist Cognitive Model for Temporal Synchronisation and Learning. 22nd National Conference on Artificial Intelligence (AAAI 2007) July, Vancouver.
  34. Child, C., Stathis, K. and Garcez, A.D. (2007). Learning to Act with RVRL Agents. 14th RCRA Workshop, Experimental Evaluation of Algorithms for Solving Problems with Combinatorial Explosion July, Rome.
  35. Garcez, A.D., Hitzler, P. and Tamburrini, G. (2007). Proceedings of IJCAI International Workshop on Neural-Symbolic Learning and Reasoning (NeSy07). Hyderabad, India.
  36. Borges, R.V., Lamb, L.C. and Garcez, A.D. (2007). Towards Reasoning about the Past in Neural-Symbolic Systems. IJCAI Workshop on Neural-Symbolic Learning and Reasoning NeSy07 January, Hyderabad, India.
  37. Borges, R.V., Lamb, L.C. and Garcez, A.D. (2006). Combining Architectures for Temporal Learning in Neural-Symbolic Systems. 6th International Conference on Hybrid Intelligent Systems ((HIS'06)) December.
  38. Ray, O. and Garcez, A.D. (2006). Towards the Integration of Abduction and Induction in Artificial Neural Networks. ECAI Workshop on Neural-Symbolic Learning and Reasoning NeSy06 August, Riva del Garda, Italy.
  39. Garcez, A.D., Hitzler, P. and Tamburrini, G. (2006). Proceedings of ECAI International Workshop on Neural-Symbolic Learning and Reasoning (NeSy06). Trento, Italy.
  40. Garcez, A.D., Lamb, L.C. and Gabbay, D.M. (2006). A Connectionist Model for Constructive Modal Reasoning. In Advances in Neural Information Processing Systems 18 (NIPS 2005) Vancouver.
  41. Carneiro, R., Dias, S.S., Fardin Jr, D., Oliveira, H., Garcez, A.D. and de Souza, A.F. (2006). Improving VG-RAM Neural Network Performance using Knowledge Correlation. 13th International Conference on Neural Information Processing (ICONIP'06) Hong Kong.
  42. Hitzler, P., Bader, S. and Garcez, A.D. (2005). Ontology Learning as a Use-Case for Neural-Symbolic Integration. IJCAI Workshop on Neural-Symbolic Learning and Reasoning NeSy05 August, Edinburgh.
  43. Garcez, A.D., Elman, J. and Hitzler, P. (2005). Proceedings of IJCAI International Workshop on Neural-Symbolic Learning and Reasoning (NeSy05). Edinburgh, Scotland.
  44. Bader, S. and Garcez, A.D. (2005). Computing First Order Logic Programs by Fibring Artificial Neural Networks. 18th International FLAIRS Conference Florida.
  45. Garcez, A.D. (2005). Fewer Epistemological Challenges for Connectionism. Computability in Europe 2005: New Computational Paradigms Amsterdam.
  46. Garcez, A.D., Dustdar, S., Gall, H., Lucia, A., Mana, A., Menzies, T., Rudolph, C. and Russo, A. (2004). Proceedings of Automated Software Engineering: Workshops at the 19th International Conference on Automated Software Engineering ASE'04. .
  47. Garcez, A.D. and Lamb, L.C. (2004). Reasoning about Time and Knowledge in Neural-Symbolic Learning Systems. Advances in Neural Information Processing Systems 16 (NIPS 2003) Vancouver.
  48. Garcez, A.D. and Gabbay, D.M. (2004). Fibring Neural Networks. 19th National Conference on Artificial Intelligence (AAAI'04) San Jose, California.
  49. Garcez, A.D., Gabbay, D.M. and Lamb, L.C. (2004). Towards a Connectionist Argumentation Framework. 16th European Conference on Artificial Intelligence (ECAI'04) Valencia.
  50. Garcez, A.D., Gabbay, D. and Lamb, L.C. (2004). Argumentation neural networks. .
  51. Rodrigues, O., Garcez, A.D.A. and Russo, A. (2004). Reasoning about requirements evolution using clustered belief revision. .
  52. Rodrigues, O., Garcez, A.D. and Russo, A. (2003). Reasoning about Requirements Evolution using Clustered Belief Revision. ESEC/FSE International Workshop on Intelligent Technologies for Software Engineering (WITSE'03) September, Helsinki.
  53. Spanoudakis, G., Garcez, A.D. and Zisman, A. (2003). Revising Rules to Capture Requirements Traceability Relations: A Machine Learning Approach. Fifteenth International Conference on Software Engineering and Knowledge Engineering (SEKE'03) July, San Francisco.
  54. Spanoudakis, G., Zisman, A. and Garcez, A. (2003). Proceedings of Workshop on Intelligent Technologies for Software Engineering (WITSE03). In conjunction with the 9th European Software Engineering Conference and the 11th Symposium on Foundations of Software Engineering .
  55. Garcez, A.D., Lamb, L.C., Broda, K. and Gabbay, M. (2003). Distributed Knowledge Representation in Neural--Symbolic Learning Systems: A Case Study. AAAI International FLAIRS Conference Florida.
  56. Garcez, A.D., Lamb, L.C. and Gabbay, D.M. (2002). A Connectionist Inductive Learning System for Modal Logic Programming. 9th IEEE International Conference on Neural Information Processing ICONIP'02 November, Singapore.
  57. Garcez, A.D. (2002). Extended Theory Refinement in Knowledge-based Neural Networks. IEEE International Joint Conference on Neural Networks (IJCNN'2002). World Congress on Computational Intelligence May, Hawaii.
  58. Garcez, A.D., Russo, A., Nuseibeh, B. and Kramer, K. (2001). An Analysis-Revision Cycle to Evolve Requirements Specifications. 16th IEEE International Conference on Automated Software Engineering (ASE-2001) November, San Diego.
  59. Broda, K., Garcez, A.D. and Gabbay, D.M. (2000). Metalevel Priorities and Neural Networks. Workshop on the Foundations of Connectionist-Symbolic Integration ECAI2000 August, Berlin.
  60. Garcez, A.D., Broda, K., Gabbay, D.M. and de Souza, A.F. (1999). Knowledge Extraction from Trained Neural Networks: A Position Paper. 6th IEEE International Conference on Neural Information Processing ICONIP'99 November, Australia.
  61. Basilio, R., Zaverucha, G. and Garcez, A.D. (1998). Inducing Relational Concepts with Neural Networks via the LINUS System. 5th International Conference on Neural Information Processing ICONIP'98 October, Kitakyushu, Japan.
  62. Garcez, A.D., Zaverucha, G. and da Silva, V.N.L. (1997). Applying the Connectionist Inductive Learning and Logic Programming System to Power Systems Diagnosis. IEEE International Joint Conference on Neural Networks (IJCNN'97) June, Houston.
  63. Garcez, A.D., Zaverucha, G. and de Carvalho, L.A.V. (1996). Logic Programming and Inductive Learning in Artificial Neural Networks. Workshop on Knowledge Representation and Neural Networks. XX German Conference on Artificial Intelligence KI96 September, Dresden, Germany.
  64. Garcez, A.D., Zaverucha, G. and de Carvalho, L.A.V. (1996). Logical Inference and Inductive Learning in Artificial Neural Networks. Workshop on Neural Networks and Structured Knowledge ECAI'96 August, Budapest.
  65. Garcez, A.D., Zaverucha, G. and da Silva, V.N.L. (1996). Programa çao em Lógica Estendida e Aprendizado Indutivo em Redes Neurais:Uma Aplicaçao em Sistemas de Potencia. 3rd Simposio Brasileiro de Redes Neurais (SBRN'96) Recife, Brasil.
  66. Garcez, A.D., Zaverucha, G. and Carvalho, L.A.V. (1995). Inferencia Lógica e Aprendizado Automáatico em Redes Neurais: Uma Representaçao Integrada do Conhecimento. 2nd Congresso Brasileiro de Redes Neurais CBRN'95 October, Curitiba, Brazil.

Journal Articles (43)

  1. Cherla, S., Tran, S.N., Weyde, T. and Garcez, A.D. (2016). Generalising the Discriminative Restricted Boltzmann Machine. .
  2. Forechi, A., De Souza, A.F., Oliveira Neto, J.D., Aguiar, E.D., Badue, C., d'Avila Garcez, A. and Oliveira-Santos, T. (2016). Fat-Fast VG-RAM WNN: A high performance approach. Neurocomputing, 183, pp. 56–69. doi:10.1016/j.neucom.2015.06.104.
  3. Percy, C., Franca, M., Dragicevic, S. and Garcez, A.D. (2016). Predicting online gambling self-exclusion: an analysis of the performance of supervised machine learning models. INTERNATIONAL GAMBLING STUDIES, 16(2), pp. 193–210. doi:10.1080/14459795.2016.1151913.
  4. Perotti, A., Boella, G. and Garcez, A.D.A. (2015). Learning and extracting tacit knowledge from processes using the Neural-Symbolic paradigm. Sistemi Intelligenti, 27(1), pp. 141–166.
  5. Guo, S., Roudsari, A. and Garcez, A.D.A. (2015). A System Dynamics Approach to Analyze Laboratory Test Errors. Studies in Health Technology and Informatics, 210, pp. 266–270. doi:10.3233/978-1-61499-512-8-266.
  6. Guo, S., Roudsari, A. and Garcez, A.D.A. (2015). Modelling Clinical Diagnostic Errors: A System Dynamics Approach. Studies in Health Technology and Informatics, 208, pp. 160–164. doi:10.3233/978-1-61499-488-6-160.
  7. Ali, H., D'Avila Garcez, A.S., Tran, S.N., Zhou, X. and Iqbal, K. (2014). Unimodal late fusion for NIST i-vector challenge on speaker detection. Electronics Letters, 50(15), pp. 1098–1100. doi:10.1049/el.2014.1207.
  8. Besold, T.R., Garcez, A.D., Kuehnberger, K.-.U. and Stewart, T.C. (2014). Neural-symbolic networks for cognitive capacities. BIOLOGICALLY INSPIRED COGNITIVE ARCHITECTURES, 9, pp. III–IV. doi:10.1016/52212-683X(14)00061-9.
  9. Guo, S., Roudsari, A. and Garcez, A.D.A. (2014). A Causal Loop Approach to the Study of Diagnostic Errors. Studies in Health Technology and Informatics, 205, pp. 73–77. doi:10.3233/978-1-61499-432-9-73.
  10. França, M.V.M., Zaverucha, G. and D'Avila Garcez, A.S. (2014). Fast relational learning using bottom clause propositionalization with artificial neural networks. Machine Learning, 94(1), pp. 81–104. doi:10.1007/s10994-013-5392-1.
  11. Tran, S.N. and d Avila Garcez, A. (2014). Low-cost representation for restricted Boltzmann machines. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8834, pp. 69–77.
  12. Perotti, A., Boella, G. and D'Avila Garcez, A. (2014). Runtime verification through forward chaining. Electronic Proceedings in Theoretical Computer Science, EPTCS, 169, pp. 68–81. doi:10.4204/EPTCS.169.8.
  13. Tran, S.N. and Garcez, A.D. (2013). Adaptive Feature Ranking for Unsupervised Transfer Learning. .
  14. De Penning, L., Garcez, A.D.A. and Meyer, J.J.C. (2013). Dreaming machines: On multimodal fusion and information retrieval using neural-symbolic cognitive agents. OpenAccess Series in Informatics, 35, pp. 89–94. doi:10.4230/OASIcs.ICCSW.2013.89.
  15. d'Avila Garcez, A.S., Gabbay, D.M. and Lamb, L.C. (2013). A neural cognitive model of argumentation with application to legal inference and decision making. Journal of Applied Logic .
  16. Agrawal, V., Baier, J., Bekris, K., Chen, Y., D'Avila Garcez, A.S., Hitzler, P., Haslum, P., Jannach, D., Law, E., Lecue, F., Lamb, L.C., Matuszek, C., Palacios, H., Srivastava, B., Shastri, L., Sturtevant, N., Stern, R., Tellex, S. and Vassos, S. (2012). Reports of the AAAI 2012 conference workshops. AI Magazine, 33(4), pp. 119–127.
  17. Perotti, A., D'Avila Garcez, A., Boella, G. and Rispoli, D. (2012). Neural-symbolic rule-based monitoring. AAAI Workshop - Technical Report, WS-12-11, pp. 21–26.
  18. D'Avila Garcez, A., Hitzler, P. and Lamb, L.C. (2012). AAAI Workshop - Technical Report: Preface. AAAI Workshop - Technical Report, WS-12-11 .
  19. De Penning, H.L.H., Den Hollander, R.J.M., Bouma, H., Burghouts, G.J. and D'Avila Garcez, A.S. (2012). A neural-symbolic cognitive agent with a mind's eye. AAAI Workshop - Technical Report, WS-12-11, pp. 9–14.
  20. D'avila Garcez, A.S. and Zaverucha, G. (2012). Multi-instance learning using recurrent neural networks. Proceedings of the International Joint Conference on Neural Networks . doi:10.1109/IJCNN.2012.6252784.
  21. Boella, G., Tosatto, S.C., Garcez, A.D.A., Genovese, V., Perotti, A. and Van Der Torre, L. (2012). Learning and reasoning about norms using neural-symbolic systems. 11th International Conference on Autonomous Agents and Multiagent Systems 2012, AAMAS 2012: Innovative Applications Track, 1, pp. 440–447.
  22. De Penning, H.L.H., D'Avila Garcez, A.S., Lamb, L.C. and Meyer, J.J.C. (2011). Neural-symbolic cognitive agents: Architecture and theory. Imperial College Computing Student Workshop - Proceedings of ICCSW'11 pp. 10–16.
  23. Borges, R.V., Garcez, A.D. and Lamb, L.C. (2011). Learning and Representing Temporal Knowledge in Recurrent Networks. IEEE TRANSACTIONS ON NEURAL NETWORKS, 22(12), pp. 2409–2421. doi:10.1109/TNN.2011.2170180.
  24. Boella, G., Tosatto, S.C., Garcez, A.D.A., Genovese, V., Ienco, D. and Van Der Torre, L. (2011). Neural symbolic architecture for normative agents. 10th International Conference on Autonomous Agents and Multiagent Systems 2011, AAMAS 2011, 2, pp. 1135–1136.
  25. Borges, R.V., Garcez, A.D.A. and Lamb, L.C. (2010). Integrating model verification and self-adaptation. ASE'10 - Proceedings of the IEEE/ACM International Conference on Automated Software Engineering pp. 317–320. doi:10.1145/1858996.1859060.
  26. Aha, D.W., Boddy, M., Bulitko, V., Garcez, A.D., Doshi, P., Edelkamp, S., Geib, C., Gmytrasiewicz, P., Goldman, R.P., Hitzler, P., Isbell, C., Josyula, P., Kaelbling, L.P., Kersting, K., Kunda, M., Lamb, L.C., Marthi, B., McGreggor, K., Nastase, V., Provan, G., Raja, A., Ram, A., Riedl, M., Russell, S., Sabharwal, A., Smaus, J.-.G., Sukthankar, G., Tuyls, K., van der Meyden, R., Halevy, A., Mihalkova, L. and Natarajan, S. (2010). Reports of the AAAI 2010 Conference Workshops. AI Magazine, 31(4), pp. 95–108.
  27. Stathis, K., d'Avila Garcez, A. and Givan, R. (2009). Preface. Journal of Algorithms, 64(4), pp. 125–126. doi:10.1016/j.jalgor.2009.04.001.
  28. Stathis, K., Garcez, A.D. and Givan, R. (2009). Special Issue: Reinforcement Learning Preface. JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 64(4), pp. 125–126. doi:10.1016/j.jalgor.2009.04.001.
  29. Garcez, A.D. and Gabbay, D.M. (2009). Logical Modes of Attack in Argumentation Networks. Studia Logica, 93, pp. 199–230.
  30. Borges, R.V., d'Avila Garcez, A.S. and Lamb, L.C. (2008). A neural-symbolic perspective on analogy. Behavioral and Brain Sciences, 31(4), pp. 379–380. doi:10.1017/S0140525X08004482.
  31. Garcez, A.D., Borges, R.V. and Lamb, L.C. (2008). A Neural-Symbolic Perspective on Analogy. Commentary on Leech et al, Analogy as Relational Priming. Behavioral and Brain Sciences, 31(4), pp. 379–380.
  32. Garcez, A.D., Lamb, L.C. and Gabbay, D.M. (2007). Connectionist Modal Logic: Representing Modalities in Neural Networks. Theoretical Computer Science, 371(1-2), pp. 34–53.
  33. Garcez, A.D. (2007). Abductive Reasoning in Neural-Symbolic Learning Systems. Topoi: An International Review of Philosophy. Logic and Cognition, 26, pp. 37–49.
  34. Dafas, P. and Garcez, A.D. (2007). Discovering Meaningful Rules from Gene Expression Data. Current Bioinformatics, 2(3), pp. 157–168.
  35. Garcez, A.D. and Lamb, L.C. (2006). A Connectionist Computational Model for Epistemic and Temporal Reasoning. Neural Computation, 18(7), pp. 1711–1738.
  36. Garcez, A.D., Lamb, L.C. and Gabbay, D.M. (2006). Connectionist Computations of Intuitionistic Reasoning. Theoretical Computer Science, 358(1), pp. 34–55.
  37. Garcez, A.D., Gabbay, D.M. and Lamb, L.C. (2005). Value-based Argumentation Frameworks as Neural-Symbolic Learning Systems. Journal of Logic and Computation, 15(6), pp. 1041–1058.
  38. Garcez, A.D., Lamb, L.C., Broda, K., Gabb, and Gabbay, D.M. (2004). Applying Connectionist Modal Logics to Distributed Knowledge Representation Problems. International Journal on Artificial Intelligence Tools, 13(1), pp. 115–139.
  39. Garcez, A.D., Gabbay, D.M., Holldobler, S. and Taylor, J.G. (2004). Journal of Applied Logic, Special Volume on Neural-Symbolic Systems. Journal of Applied Logic, Special Volume on Neural-Symbolic Systems .
  40. Garcez, A.D., Russo, A., Nuseibeh, B. and Kramer, J. (2003). Combining Abductive Reasoning and Inductive Learning to Evolve Requirements Specifications. Software IEE Proceedings, 150(1), pp. 25–38.
  41. Garcez, A.D. and Thomaz, C.E. (2003). Book Review: Neural Networks

    for Pattern Recognition (by Christopher M. Bishop).
    Journal of Logic and Computation, 13(4), p. 627.
  42. Garcez, A.D., Broda, K. and Gabbay, D.M. (2001). Symbolic Knowledge Extraction from Trained Neural Networks: A Sound Approach. Artificial Intelligence, 125(1-2), pp. 153–205.
  43. Garcez, A.D. and Zaverucha, G. (1999). The Connectionist Inductive Learning and Logic Programming System. Applied Intelligence Journal, 11(1), pp. 59–77.

Reports (15)

  1. Ren, L. and Garcez, A.D. (2008). Rule Extraction from Support Vector Machines: A Geometric Approach. Technical Report. Department of Computing, City University London.
  2. Dafas, P. and Garcez, A.D. (2006). Applied Temporal Rule Mining to Time Series. Department of Computing, City University London.
  3. d'Avila Garcez, A. (2006). Proceedings of ECAI International Workshop on Neural-Symbolic Learning and Reasoning NeSy 2006..
  4. Dafas, P. and d'Avila Garcez, A. (2005). Applied temporal Rule Mining to Time Series..
  5. d'Avila Garcez, A. (2005). Proceedings of IJCAI International Workshop on Neural-Symbolic Learning and Reasoning NeSy 2005..
  6. Garcez, A.D., Gabbay, D.M. and Lamb, L.C. (2004). Argumentation Neural Networks: Value-based Argumentation Frameworks as Neural-Symbolic Learning Systems. Department of Computing, City University London.
  7. Rodrigues, O., Garcez, A.D. and Russo, A. (2003). Reasoning about Requirements Evolution using Clustered Belief Revision. Department of Computer Science, King's College London.
  8. Garcez, A.D. and Gabbay, D.M. (2003). Fibring Neural Networks. Department of Computing, City University London.
  9. d'Avila Garcez, A., Spanoudakis, G. and Zisman, A. (2003). Proceedings of ACM ESEC/FSE International Workshop on Intelligent Technologies for Software Engineering WITSE03..
  10. Garcez, A.D., Russo, A., Nuseibeh, B. and Kramer, J. (2002). Combining Abductive Reasoning and Inductive Learning to Evolve Requirements Specifications. Department of Computing, Imperial College, London.
  11. Garcez, A.D., Lamb, L.C. and Gabbay, D.M. (2002). A Connectionist Inductive Learning System for Modal Logic Programming. Department of Computing, Imperial College, London.
  12. Garcez, A.D. (1998). Knowledge Extraction from Neural Networks, MPhil-PhD Transfer Report. Department of Computing, Imperial College, London.
  13. Garcez, A.D., Broda, K. and Gabbay, D.M. (1998). Symbolic Knowledge Extraction from Trained Neural Networks: A New Approach. Department of Computing, Imperial College, London.
  14. Garcez, A.D. (1997). Towards Neural-Symbolic Integration, PhD First Year Report. Department of Computing, Imperial College, London.
  15. Garcez, A.D. (1994). Inferencia Automática e Modelos Conexionistas. Technical Report, COPPE. Engenharia de Sistemas e Computaçao, UFRJ, Rio de Janeiro.

Theses/Dissertations (3)

  1. Garcez, A.D. Redes Neurais: Fundamentos e Aplicaçoes. Final Year Project, Computing Engineering. (Undergraduate Dissertation)
  2. Garcez, A.D. Um Sistema Neural para Programaçao em Lógica com Aprendizado Indutivo. (Master's Thesis)
  3. Garcez, A.D. Nonmonotonic Theory Refinement in Artificial Neural Networks. (PhD Thesis)

Find us

City, University of London

Northampton Square

London EC1V 0HB

United Kingdom

Back to top

City, University of London is an independent member institution of the University of London. Established by Royal Charter in 1836, the University of London consists of 18 independent member institutions with outstanding global reputations and several prestigious central academic bodies and activities.