Introduction: Examples

- **Engineering Examples:** Distributed electricity production and consumption, Traffic Networks, etc...

...
Introduction: Examples

- **Engineering Examples**: Distributed electricity production and consumption, Traffic Networks, etc...

- **Social Networks**: Telecommunication company selection, Opinion about an idea or a product, Selection of fashion group, Engagement in criminal behavior, etc...

- **Non-Social Networks**: Stores for renting, Gas Station Prices, etc...
Game Description: Dynamics and Costs

Interaction Structure:
- Set of players \((p_1, \ldots, p_N)\)
- Each player \(p_i\) has a type \(\theta_i \in \Theta\).
- Graph of interactions \(G\).

Dynamics:
\[
x_{i, k+1} = \sum_{j \in N_i^1(G)} f_{\theta_i, \theta_j}(x_{i, k}, x_{j, k}, u_{i, k}, u_{j, k}, w_{i, k})
\]

Cost Functions:
\[
J_i = E \left\{ \sum_{k=0}^{T} \rho^k \left[\sum_{j \in N_i^1(G)} g_{\theta_i, \theta_j}(x_{i, k}, x_{j, k}, u_{i, k}, u_{j, k}) \right] \right\}
\]
Interaction Structure:
- Set of players \((p_1, \ldots, p_N)\)
- Each player \(p_i\) has a type \(\theta_i \in \Theta\).
- Graph of interactions \(G\).

Dynamics:
\[x_{i+1}^{k} = \sum_{j \in N_i^1(G)} f^{\theta_i \theta_j}(x_i^k, x_j^k, u_i^k, u_j^k, w_i^k) \]

Cost Functions:
\[J_i = E \left\{ \sum_{k=0}^{T} \rho^k \left[\sum_{j \in N_i^1(G)} g^{\theta_i \theta_j}(x_i^k, x_j^k, u_i^k, u_j^k) \right] \right\} \]

Information:
- **Local**
- **Statistical:** The players consider a statistical ensemble of games
Definition of an approximate equilibrium concept for ensembles of games.

Definition (ε - Probabilistic Approximate Nash Equilibrium)

Consider an ensemble of Interaction Structures \mathcal{E}. A set of strategies $(\gamma_i)_{i=1}^N$ is ε - Probabilistic Approximate Nash Equilibrium for the ensemble \mathcal{E} if it holds:

$$P\left(\{S \in \mathcal{E} : (\gamma_i)_{i=1}^N \text{ is an } \varepsilon - \text{Nash equilibrium}\} \right) > 1 - \varepsilon$$
Definition of an approximate equilibrium concept for ensembles of games.

Definition (ε - Probabilistic Approximate Nash Equilibrium)

Consider an ensemble of Interaction Structures E. A set of strategies $(\gamma_i)_{i=1}^N$ is ε-Probabilistic Approximate Nash Equilibrium for the ensemble E if it holds:

$$P\left(\{S \in E : (\gamma_i)_{i=1}^N \text{ is an } \varepsilon - \text{Nash equilibrium}\}\right) > 1 - \varepsilon$$

- How much information is needed to have a PAN equilibrium.

Complexity Functions
Approximate Equilibrium: Statistical Physics Analog

The total energy in the canonical ensemble

I. Kordonis, G. P. Papavassilopoulos... meeting
Special Cases

Examples of games with low complexity:

- Static or LQ games on *Erdos-Reyni* random graphs or *Small World* nets: **Law of large numbers**
- Static game on *Lattices*: **Contraction mapping ideas**
- LQ game on a *Ring*: **Low gain to distant players**
- A non-quadratic static game on a *ring*: **Cooperation among the players**
Dynamic Rules

What if there is not enough information?

- Nash Equilibrium
 - Stochastic Adaptive Control problem (Dual Control Problem): The actions of each player affect her own future estimation
 - The actions of each player affect the future estimation of the other players (like the Witsenhausen’s counterexample)
What if there is not enough information?

- **Nash Equilibrium**
 - Stochastic Adaptive Control problem (Dual Control Problem): The actions of each player affect her own future estimation
 - The actions of each player affect the future estimation of the other players (like the Witsenhausen’s counterexample)

- **Dynamic/Adaptation Rules:**
 - Simple rules though non-optimal, would probably lead to Nash equilibrium asymptotically
 - Bounded Rationality
Dynamic Rules

What if there is not enough information?

- **Nash Equilibrium**
 - Stochastic Adaptive Control problem (Dual Control Problem): The actions of each player affect her own future estimation
 - The actions of each player affect the future estimation of the other players (like the Witsenhausen’s counterexample)

- **Dynamic/Adaptation Rules:**
 - Simple rules though non-optimal, would probably lead to Nash equilibrium asymptotically
 - Bounded Rationality

Examples:
- Adaptive Control Laws
- Learning
- Best Response
- Evolutionary Dynamics
The Cheating Problem

- **The Cheating Problem**: The Adaptation rule of a player may be used by the others in order to manipulate her.
The Cheating Problem: The Adaptation rule of a player may be used by the others in order to manipulate her.

Questions

1. When can a Dynamic/Adaptation rule serve as a prediction of the behavior of the players? Assessment
The Cheating Problem: The Adaptation rule of a player may be used by the others in order to manipulate her.

Questions

1. When can a Dynamic/Adaptation rule serve as a prediction of the behavior of the players? **Assessment**

2. Are there any simple cheating strategies?
The Cheating Problem: The Adaptation rule of a player may be used by the others in order to manipulate her.

Questions

1. When can a Dynamic/Adaptation rule serve as a prediction of the behavior of the players? **Assessment**
2. Are there any simple cheating strategies?
3. What are the outcomes of the game when (all or some of) the participants are cheating?
Simple cheating strategy: **Pretending**

1. Game outcomes **alternative** to the Nash equilibrium.
2. Interesting relationships between **pretending** and **leadership**
3. Pretending may enhance **cooperation**, **competition** or even make a system designed to work well on the Nash equilibrium **not working at all**
Future Directions

- Time varying network topologies
- Develop testable conditions to assess the adaptive laws and develop laws less sensitive to cheating
- Network design to reduce the ability to cheat